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ABSTRACT: Groundwater pumping can cause reductions in streamflow (“streamflow depletion”) that must be quanti-
fied for conjunctive management of groundwater and surface water resources. However, streamflow depletion cannot
be measured directly and is challenging to estimate because pumping impacts are masked by streamflow variability
due to other factors. Here, we conduct a management-focused review of analytical, numerical, and statistical models
for estimating streamflow depletion and highlight promising emerging approaches. Analytical models are easy to
implement, but include many assumptions about the stream and aquifer. Numerical models are widely used for
streamflow depletion assessment and can represent many processes affecting streamflow, but have high data, exper-
tise, and computational needs. Statistical approaches are a historically underutilized tool due to difficulty in attribut-
ing causality, but emerging causal inference techniques merit future research and development. We propose that
streamflow depletion-related management questions can be divided into three broad categories (attribution, impacts,
and mitigation) that influence which methodology is most appropriate. We then develop decision criteria for method
selection based on suitability for local conditions and the management goal, actionability with current or obtainable
data and resources, transparency with respect to process and uncertainties, and reproducibility.
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INTRODUCTION

Conjunctive water management, which acknowl-
edges the interconnected nature of groundwater and
surface water and manages them as a single

resource, is critical to sustain both human society
and aquatic and terrestrial ecosystems. Groundwater
inflow to streams provides a stable supply of water,
which sustains human water needs for domestic use,
industry, and agriculture (Taylor et al. 2013; Gleeson,
Cuthbert, et al. 2020) and supports ecological
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communities (Larsen and Woelfle-Erskine 2018).
Streamflow depletion, defined as “a reduction in total
streamflow caused by groundwater pumping” (Barlow
et al. 2018), can occur in both gaining or losing
streams (Figure 1). Streamflow depletion occurs when
pumping captures groundwater that otherwise would
flow from the aquifer to the stream (increased gains
in a gaining stream), reverses the direction of flow at
the stream–aquifer interface (transition from gaining
to losing stream), or increases the rate of infiltration
losses through the streambed (increased losses in a
losing stream). For further background and details on
streamflow depletion please see Barlow and Leake
(2012).

Streamflow depletion is particularly problematic
when it causes streamflow to drop below environmen-
tal flows, defined as “the quantity, timing, and qual-
ity of freshwater flows and levels necessary to
sustain aquatic ecosystems which, in turn, support
human cultures, economies, sustainable livelihoods,
and well-being” (Arthington et al. 2018). Streamflow
depletion has already impaired environmental flows
around the world (Konikow and Leake 2014; de Graaf
et al. 2019), with diverse local impacts including
transitions from perennial to non-perennial streams
(Zimmer et al. 2020; Zipper, Hammond, et al. 2021),
impairment of surface water right holders (Idaho
Water Resource Board 2019) and collapse of aquatic
ecosystems (Perkin et al. 2017). Impairment of envi-
ronmental flows due to streamflow depletion is antici-
pated to become more widespread in the future and

will be exacerbated by climate change (de Graaf et al.
2019).

Unfortunately, streamflow depletion is challenging
to measure directly and, as a result, the extent to
which groundwater pumping affects streamflow
remains unknown or uncertain, even in settings
where the hydrology has been previously studied.
Quantifying streamflow depletion is hard because sig-
nificant time lags between pumping and changes in
streamflow may exist, and these lags vary as a func-
tion of well-stream geometry and aquifer characteris-
tics (Bredehoeft 2011). Furthermore, the signal of
streamflow depletion will be convoluted with all other
factors impacting both short-term and long-term
streamflow variability (Barlow and Leake 2012),
many of which are difficult to characterize such as
surface water diversions, weather variability, reser-
voir operations, land use change, and climate change.
While streamflow depletion can be measured at the
scale of an individual stream reach using intensive
field measurements (Hunt et al. 2001; Kollet and
Zlotnik 2003; Lee et al. 2017), it is not possible to
measure streamflow depletion at the regional scale,
nor resolve depletion in individual segments, using
observational data alone.

Since regional-scale streamflow depletion cannot
be measured, managers must base decisions on
streamflow depletion estimates. Three primary
approaches for estimating regional-scale streamflow
depletion are analytical, numerical, and statistical
models. Each approach has strengths and weaknesses
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FIGURE 1. Response of an interconnected stream–aquifer system to pumping. (a) Example stream–aquifer cross section for a gaining
stream. Streamflow depletion occurs when groundwater that would have discharged into the stream is captured by the pumping well.
Streamflow depletion can also occurring in losing streams. (b) Streamflow depletion is the reduction in streamflow caused by pumping rela-
tive to what it would have been in the absence of pumping. Streamflow depletion cannot be directly measured and is challenging to estimate.
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for decision support purposes, making the selection of
an appropriate method challenging. Analytical mod-
els were the first approaches developed for estimating
streamflow depletion (Theis 1941; Glover and Balmer
1954) and have relatively low data and computational
requirements, but contain many simplifying assump-
tions that reduce their flexibility (Hunt 2014; Huang
et al. 2018). In contrast, numerical models allow for a
more realistic representation of groundwater and sur-
face water interactions and are often considered the
“gold standard” for streamflow depletion assessment
in that they are expected to be the most accurate, but
are complex and require significant time, data, and
expertise for their development, and are available only
in limited locations (Mehl and Hill 2010; Barlow and
Leake 2012; Fienen, Bradbury, et al. 2018; Fienen
et al. 2016). Finally, statistical models attempt to
relate changes in streamflow to potential drivers such
as groundwater pumping and climate variability, but
are limited in their ability to identify causal relation-
ships (Barlow and Leake 2012; Karpatne et al. 2019)
and to our knowledge have only rarely been used to
quantify streamflow depletion. However, use of statis-
tical models in other fields such as climate change
attribution suggest that their use may evolve going
forward, particularly given recent advances in physics-
informed statistical methods (Read et al. 2019).

Quantifying streamflow depletion is important for
numerous water management decisions, and water
managers must choose among the variety of available
approaches by considering their strengths and weak-
nesses relative to available resources. To serve this
process, our objective is to review and synthesize the
advantages, disadvantages, and uncertainties in
streamflow depletion estimation methods and provide
water managers with a better foundation to select
the most appropriate method(s) based on the manage-
ment question, hydrogeological setting, data, and
resources available. We provide examples to illustrate
the relative utility and practicality of these
approaches, and while we focus primarily on North
American examples, the applicability of this work is
global, much like the problem of streamflow depletion
(Rohde et al. 2017; Gleeson and Richter 2018; de
Graaf et al. 2019).

In this review, we use the title “water manager” to
encompass multiple types of publicly and privately
employed decision-makers, including staff of organi-
zations like state or provincial water planning or reg-
ulation offices, irrigation districts, fish and wildlife
organizations, watershed associations, and/or other
parties working with these agencies such as environ-
mental consultants or nongovernmental organiza-
tions. We collected literature and policy for review
through several approaches including (1) searching
databases (i.e., Web of Science, Google Scholar) with

relevant terms such as “streamflow depletion”; (2)
studies with which our group of authors were famil-
iar; and (3) forward and backward citation tracing
from studies identified in steps (1) or (2). We also had
semi-structured conversations with five water man-
agers, with specific roles spanning water planning
and regulation, environmental consulting and deci-
sion support, and environmental nongovernmental
organizations; more details about these conversations
are in Appendix. The focus on water management
applications and inclusion of recent and emerging
methods of streamflow depletion estimation distin-
guishes this work from the foundational contributions
of Barlow and Leake (2012).

STREAMFLOW DEPLETION IN A WATER
MANAGEMENT CONTEXT

Management and Policy of Interconnected
Groundwater and Surface Water

Water management primarily interfaces with
streamflow depletion through questions related to
changes in surface water flows to ensure water avail-
ability for downstream users and/or maintain envi-
ronmental flows for aquatic ecosystems. Historically,
groundwater resources and surface water resources
have often been treated separately (Bredehoeft and
Young 1983; Gleeson et al. 2012), but in recent dec-
ades conjunctive water management frameworks that
acknowledge the interconnected nature of surface
water and groundwater are being applied in many
jurisdictions.

Conjunctive water management frameworks from
around the world include significant variation in how
(or if) streamflow depletion is addressed. In the Uni-
ted States (U.S.), California’s Sustainable Groundwa-
ter Management Act mandates that groundwater
pumping have no unreasonable impact on intercon-
nected surface water (Rohde et al. 2018). In Canada,
British Columbia’s Water Sustainability Act requires
that wells do not cause reductions in streamflow
beyond environmental limits (Water Sustainability
Act 2014). In the European Union, the European
Water Framework Directive requires that pumping
not impair environmental flows in surface water such
as streams, though specifics on streamflow depletion
estimation are not provided (Kallis and Butler 2001;
Gleeson and Richter 2018). Australia’s 2004 National
Water Initiative acknowledged the interconnectivity
of groundwater and surface water resources and
requires conjunctive management, including explicit
consideration of the impacts of impaired flows on
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groundwater-dependent ecosystems such as commu-
nities in groundwater-fed streams (Rohde et al. 2017;
Ross 2018).

Despite these examples, effective conjunctive man-
agement of surface water and groundwater is lagging
behind scientific understanding in many settings. A
review of 54 groundwater management plans in the
U.S. found that only six (11%) had quantitative tar-
gets related to streamflow depletion (Gage and Mil-
man 2020), and there are many regions around the
world where streamflow depletion is not addressed by
water management. In India, for example, groundwa-
ter and surface water are typically managed sepa-
rately (Srinivasan and Kulkarni 2014; Harsha 2016),
and therefore “groundwater use is not considered to be
linked to streamflow and is decoupled from the surface
water allocation” by water management groups (Biggs
et al. 2007). Even where new regulations and policies
are made to address the interconnected nature of
groundwater and surface water, there can be legacy
effects of a different or unregulated past that
adversely impact water resources (Owen et al. 2019).

The wide range of approaches to identifying, quan-
tifying, and managing streamflow depletion around
the world, as well as variable regulatory frameworks,
demonstrates the need for decision resources water
managers can use to select and implement appropri-
ate streamflow depletion estimation approaches.

Streamflow Depletion Management Decisions

We identified a number of common water manage-
ment questions related to streamflow depletion
(Table 1; Figure 2). Broadly, these questions can be
categorized into three thematic groups:

1. Attribution: Does pumping contribute to
decreases in streamflow and, if so, how do pump-
ing impacts compare to other drivers of change?

2. Impacts: What are the implications of streamflow
depletion for water users, ecosystems, and society?

3. Mitigation: How can negative impacts of stream-
flow depletion be minimized?

Different types of information are needed to
answer these questions. For attribution questions, it
is necessary to quantify the relative importance of
different potential drivers (e.g. climate, pumping,
land use) on historical streamflow variation. For im-
pacts questions, useful information includes the mag-
nitude of change in streamflow (relative to
management targets and/or environmental flows)
that would occur as a result of pumping from a well
or group of wells. Answering mitigation questions
requires understanding the impacts of pumping at

different times of year and the magnitude and time
scale of a stream’s recovery following the cessation of
pumping. For all of these questions, estimates are
often required at different times of year and for dif-
ferent locations within the stream network. Further-
more, taking management action in response to these
questions includes balancing the costs, benefits, and
risks of a given management strategy, and therefore
depletion estimates that underlie these decisions
should include some information about the magnitude
and sources of uncertainty (Doherty and Simmons
2013; White, Foster, et al. 2021).

Characteristics of a Successful Streamflow Depletion
Estimation Approach

Many factors contribute to water management
decisions (Figure 2). Based on literature review and
our experience, we suggest four general characteris-
tics that are essential to providing decision support
for streamflow depletion management. The first two
characteristics can help guide the selection of an
appropriate method:

Well-Suited to Local Conditions. In order to
isolate the signal of pumping, the streamflow depletion
estimation method should be able to account for other
potential influences on streamflow, and associated
uncertainty, within the domain of interest (e.g.,
Knowling et al. 2020). Depending on the region, these
may include weather and climate variability, land use
change, surface water withdrawals, reservoir opera-
tions, or other ways that humans modify the water
cycle (Abbott et al. 2019; Gleeson, Wang-Erlandsson,
et al. 2020). Local expert knowledge, in the form of a
place-based understanding of processes that are cur-
rently and have historically affected local hydrology, is
essential to identify the potential influences on
streamflow that need to be considered by a streamflow
depletion estimation approach, and because depletion
management policies are increasingly implemented at
local scales (Opdam et al. 2013).

Actionable. For management purposes, the
method must be able to provide an estimate within
an acceptable margin of error with input data that
either already exist and/or can be obtained, and pro-
vide sufficient information about prediction uncer-
tainty so that a water manager can weigh costs,
benefits, and risks of their decision options (Doherty
and Simmons 2013; Fienen et al. 2021). Implicit
within actionability are numerous practical consider-
ations, including whether there is sufficient in-house
expertise to implement the method or whether analy-
sis must be contracted, and the related issue of
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TABLE 1. Management questions relevant to streamflow depletion, including case studies where the example question has been addressed.

Thematic group Example question Case studies

Attribution: Does pumping contribute
to decreases in streamflow and,
if so, how do pumping impacts
compare to other drivers of change?

Are irrigators responsible for the observed
reductions in streamflow, or is it some other factor?

Wisconsin Central Sands (Kraft et al. 2012;
Kniffin et al. 2020)

Where and when does streamflow respond
to different drivers of change (climate,
land use, pumping)?

Loess Plateau, China (Gao et al. 2016;
Zhao et al. 2018)

Impacts: What are the implications
of streamflow depletion (for water
users, ecosystems, and society)?

What are the impacts of installing a new
well on environmental flows?

Michigan Water Withdrawal Assessment
Tool (Reeves et al. 2009)

Are there groundwater or surface water
quality repercussions associated with
streamflow depletion?

Missouri River (Kelly and Rydlund 2006)

Would a new well impact senior water rights,
critical habitat, and/or environmental flows?

British Columbia Water Sustainability
Act (Water Sustainability Act 2014)

How long does it take to detect streamflow depletion
and are we seeing the full impacts of pumping now?

Australia (Evans et al. 2006)

Mitigation: How can negative
impacts of streamflow
depletion be minimized?

Would a proposed pumping reduction and streamflow
augmentation plan meet in-stream flow requirements?

Quivira National Wildlife Refuge
(KDA-DWR 2019)

What management actions are needed to avoid
unreasonable impacts of pumping on
interconnected surface waters?

California Groundwater Sustainability
Agencies (Rohde et al. 2018;
Owen et al. 2019)

Can streamflow depletion impacts be addressed
by modifying the timing and/or location
of groundwater withdrawals?

Gallatin River, Montana (Kendy and
Bredehoeft 2006)

Can managed aquifer recharge mitigate against
streamflow depletion impacts? In which regions
could managed aquifer recharge provide
the most benefit?

Nam River, South Korea (Lee et al. 2019);
Eastern Snake Plain Aquifer, Idaho
(Idaho Water Resource Board 2019)

FIGURE 2. Factors (blue text) that may affect the decision of a streamflow depletion estimation tool, which are shown as options on the tool
belt.
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whether the cost of obtaining streamflow depletion
estimates is affordable.

The third and fourth characteristics are good scien-
tific practices to enhance trust and engagement
regardless of the specific streamflow depletion estima-
tion method used.

Transparent. The logic behind the choice of the
method, including the strengths, weaknesses,
assumptions, and uncertainties of the chosen
approach and any alternatives, should be communi-
cated to parties who will be affected by the stream-
flow depletion estimates (Eker et al. 2018). Ideally,
the study design would incorporate these parties
because co-development of methods and scenarios
enhances understanding of, and trust in, the result-
ing streamflow depletion estimates (Kniffin et al.
2020), increases the perceived legitimacy of research
(Dickert and Sugarman 2005), and can improve the
quality of decisions (Reed 2008). Furthermore, uncer-
tainty and sensitivity analyses are necessary to eval-
uate the overall uncertainty in estimates and relative
importance of different input parameters, respectively
(Pianosi et al. 2016; Saltelli et al. 2019).

Reproducible. Ensuring that the analysis and
results can be reproduced is essential to enhancing trust
in streamflow depletion estimates and addressing poten-
tial legal challenges to official decisions (Munaf�o et al.
2017). Necessary steps to ensure reproducibility would
likely include archiving raw and processed data files,
model input files, calibration datasets, and code neces-
sary to run any analyses or models and version used
(Wilkinson et al. 2016; Lowndes et al. 2017). In some
settings, in particular at smaller spatial scales where
there are fewer pumping wells, care should be taken to
ensure that individual privacy is not compromised dur-
ing data sharing by anonymizing or aggregating data to
coarser scales (Zipper, Carah, et al. 2019; Zipper, Stack
Whitney, et al. 2019). While there have been substantial
recent improvements in open-source tools to enable
reproducible hydrological modeling workflows (Bakker
et al. 2016; Fienen et al. 2021; White, Hemmings, et al.
2021), in practice true reproducibility remains rare in
hydrological science (Stagge et al. 2019), indicating that
the hydrologic community must continue to improve
with regard to reproducibility.

METHODS USED FOR QUANTIFYING
STREAMFLOW DEPLETION

In this section, we describe the strengths and
weaknesses of analytical, numerical, and statistical

approaches to estimate streamflow depletion
(Table 2), and provide examples of where each
method has been used for making water management
decisions related to streamflow depletion.

Analytical Models

Overview. Analytical models were the first tool
developed for streamflow depletion estimation, and
have been used for almost 80 years in many regula-
tory and other resource management circumstances
(Theis 1941; Glover and Balmer 1954; Hantush 1965;
Jenkins 1968). Analytical models adopt a number of
assumptions to simplify stream–aquifer interactions
and estimate streamflow depletion based on govern-
ing equations for groundwater flow and the conserva-
tion of mass (Barlow and Leake 2012). They typically
provide streamflow depletion estimates caused by a
single well in a single stream, though estimates of
depletion are often combined additively to account for
impacts of multiple wells. Huang et al. (2018) review
the large number of existing analytical models and
present a guide for analytical model selection based
on aquifer and stream characteristics.

Strengths. The primary strengths of analytical
models are their relatively low data requirements
and their ease of use (Table 2). For example, the only
inputs required by the widely used Glover and Balmer
(1954) model are aquifer transmissivity, storativity,
and the distance from the well to the stream. The
more complex Hunt (1999) model requires only a sin-
gle additional term, the streambed conductance, to
account for a potential low-permeability streambed
layer, though distributed regional-scale estimates of
streambed conductance are challenging to measure
and rarely available (Christensen 2000; Korus et al.
2018, 2020; Abimbola et al. 2020). Spreadsheet tools
are available online to calculate streamflow depletion
with a variety of analytical models (e.g., Environment
Canterbury 2020). Since analytical model calculations
can be conducted rapidly, they are well-suited for inte-
gration into web-based decision support tools and can
provide screening estimates to prioritize more detailed
study (Huggins et al. 2018). Furthermore, these low
computational costs enable rapid and straightforward
sensitivity and uncertainty analysis of depletion
results, though these assessments are inherently lim-
ited by the assumptions required to develop analytical
models (see “Weaknesses” subsection).

Weaknesses. The primary weakness of analytical
models is the required number of simplifying assump-
tions to derive analytical solutions. Common assump-
tions include a homogeneous and isotropic
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subsurface, linear streams, and constant water levels
in the stream and aquifer through time. These
assumptions limit the ability of analytical models to

represent some important processes, such as changes
phreatophytic evapotranspiration caused by pumping,
and the possible scope of uncertainty analysis, since

TABLE 2. Strengths, weaknesses, and considerations with respect to decision criteria.

Method Strengths Weaknesses
Considerations with respect to crite-

ria

Analytical models

• Low data, expertise, and
computational requirements

• Can quickly explore differ
ent pumping scenarios

• Useful as a screening tool
to prioritize further investi
gation with other
approaches

• Long history in water man
agement applications

• Many simplifying assumptions
(constant stream water level,
homogeneous subsurface, etc.)

• Limited capability for scenario
analysis due to inability to
represent many processes
(evapotranspiration,
unsaturated flow)

• Derivations are not available for
many stream-aquifer systems

• Limited spatial extent (point
based predictions)

• Well-suited: Simplifying assumptions
often preclude models that include
important site-specific processes

• Actionable: Low data and expertise
requirements to implement; many
spreadsheet tools exist

• Transparent: Simplified model form
is often easy to explain. Can provide
sensitivity analysis, but limited
framework for uncertainty analysis

• Reproducible: Simplified model forms
are often easier to share and
reproduce

Numerical models

• Realistic representation of
many processes in up to 3
spatial dimensions plus
time

• Ability to assign/test causa
tion and explore different
scenarios

• Provide solutions for both
storage and flux

• Widely used and perceived
as accurate for streamflow
depletion calculations

• Estimating uncertainties in
parameters and predictions
is possible

• Predictions outside training
conditions are limited by
the physics represented by
the model, which can make
the predictions more
reliable

• High data, expertise, time
required

• Can be large computational costs

• Challenging to test due to
common data limitations

• Predictions outside training condi-
tions may not be reliable (but
maybe better than other
approaches?)

• Mass balance numerical errors
can overwhelm pumping signal

• Can appear realistic even when
errors are large

• Well-suited: Most potentially
important processes can be included,
and uncertainty associated with
different processes and inputs can be
quantified

• Actionable: Specialized, model-
specific training is required for
development and use. Some models
have legal standing, making results
actionable

• Transparent: Sensitivity and
uncertainty analyses are possible but
computationally expensive

• Reproducible: Many open-source tools
facilitate reproducibility, though
some numerical models are
proprietary

Statistical models

• Flexible framework
adaptable to a wide range
of information sources and
target metrics

• Do not require hard-to-
collect data about
subsurface

• Generally lower
computational needs and
less domain-specific
expertise is required
compared to numerical
models

• Work well for the analysis
and simulation of long
records

• Challenging to develop causal
attribution

• May not provide level of detail/
resolution in terms of space and
time needed to test some
hypotheses or evaluate
management questions

• Often narrow focus; designed
around specific objectives with
challenges moving outside of that
objective

• Predictions outside training condi
tions may not be reliable

• Often need large datasets for
training

• Well-suited: Accuracy and ability to
represent local processes are highly
dependent on observed data to
represent similar conditions

• Actionable: Flexible approach can
leverage diverse data sources
depending on local availability

• Transparent: Many model forms are
easily understood, though some are
considered “black box.” Model
parameters often do not have
physical meaning related to field
conditions

• Reproducible: Stochastic models and
models relying on underlying ran
domness can be difficult to reproduce

the
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impact of many uncertain processes and parameters
cannot be evaluated due to the limited input require-
ments and simple model structure of analytical mod-
els (Table 2). Analytical models have been derived for
many different, though still idealized, hydrogeological
settings (Huang et al. 2018), including wedge-shaped
aquifers at the confluence of two streams (Yeh et al.
2008), streams that intersect impermeable boundaries
(Singh 2009), partially penetrating streams (Hunt
et al. 2001; Hunt 2003), leaky aquifers (Butler et al.
2007; Zlotnik and Tartakovsky 2008), variable
streambed conductivity (Neupauer et al. 2021), and
impacts of land use change (Zlotnik 2015; Traylor
and Zlotnik 2016).

Emerging Approaches. Recently, analytical
depletion functions were proposed as an empirical
tool to overcome the assumptions of a linear stream
by accounting for multiple affected stream reaches
and stream sinuosity (Zipper, Dallemagne, et al.
2018; Zipper, Gleeson, et al., 2019, 2021; Li et al.
2020, 2021). Analytical depletion functions combine
(1) an analytical model with stream proximity crite-
ria, which are used to identify stream segments that
are potentially affected by a well, and (2) a depletion
apportionment equation, which then distributes the
estimated streamflow depletion among the stream
segments (Zipper, Gleeson, et al. 2019). In inter-
model comparisons, the analytical depletion functions
had a better agreement with process-based numerical
models than standalone analytical models (Zipper,
Gleeson, et al. 2019, 2021), potentially indicating
improved accuracy of spatially distributed estimates
of streamflow depletion. Despite these improvements,
analytical depletion functions are subject to most of
the same assumptions as analytical models, and
therefore require additional testing before widespread
use.

Example Use in Management. Due to their rel-
atively long history and ease of implementation, ana-
lytical models have been used for water management
in a number of settings. In Colorado and other juris-
dictions in the western U.S., the streamflow depletion
factor (SDF) has been used to characterize stream-
flow depletion and establish regulatory guidelines for
streamflow depletion by wells for streams that have
senior rights holders (Miller et al. 2007). The SDF
was defined by Jenkins (1968) from an analytical
solution (Glover and Balmer 1954) as the time
required for the streamflow depletion to equal 28 per-
cent of the volume pumped from the well. The SDF is
estimated using the distance from the well to the
stream and the effective storativity and transmissiv-
ity of the aquifer. In some applications, the analytical
solution itself is reduced to consideration of the SDF

to account for the potential time lag between the ini-
tiation of pumping and impact on a stream, or, con-
versely, for the required time lag for the streamflow
to recover once pumping is stopped. The SDF is con-
venient because this factor can be mapped (e.g., Jenk-
ins and Taylor 1972) to support communication and
management, and therefore provide a rapid tool for
water managers to evaluate the relative magnitude
and timing to impact of wells placed in different loca-
tions. Furthermore, in settings where response func-
tions such as the SDF have been well-characterized
and reliable groundwater withdrawal data are avail-
able, water use accounting can provide reasonable
estimates of the attribution and impacts of stream-
flow depletion, as well as evaluate mitigation strate-
gies.

Another example is the State of Michigan’s Water
Withdrawal Assessment Tool (https://www.egle.state.
mi.us/wwat/), which integrates an analytical model
with a depletion apportionment equation to estimate
potential impacts of groundwater pumping on surface
water resources (Reeves et al. 2009). This tool is used
to screen high-capacity well registration for the state
using risk-based streamflow depletion criteria (Rus-
wick et al. 2010; Steinman et al. 2011). In the eleven
years since use of the tool became part of the regis-
tration process, nearly 3,400 registrations were com-
pleted by passing the screening criteria. An
additional 1,500 registrations did not initially pass
the screening and were referred to the state for site-
specific review where all but 60 were allowed to regis-
ter after additional analysis (Michigan Water Use
Advisory Council 2020).

Numerical Models

Overview. In contrast to analytical models,
numerical models typically include a three-
dimensional representation of the surface and subsur-
face and solve for storage and flow throughout the
domain. Typically, models are developed for a region
of interest (such as an aquifer or a watershed), a pro-
cess that includes considerable data collection, data-
base management, model construction, history
matching, and visualization. Streamflow depletion is
estimated by comparing streamflow in simulations
with and without pumping in all or a subset of the
domain (Hill et al. 1992; Neupauer and Griebling
2012; Ahlfeld et al. 2016; Zipper, Gleeson, et al.
2021). Most streamflow depletion studies based on
numerical models have used groundwater flow mod-
els such as MODFLOW, but recent examples have
included integrated hydrologic models that couple
land surface, vadose zone, and groundwater processes
to simulate feedbacks between pumping, groundwater
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recharge, subsurface storage, and streamflow (Con-
don and Maxwell 2014, 2019; Woolfenden and Nishi-
kawa 2014; Kollet et al. 2017). Numerical models for
streamflow depletion estimation can be created at a
variety of scales, ranging from an individual water-
shed or aquifer (Leaf et al. 2015; Tolley et al. 2019;
Kniffin et al. 2020), to regions (Rossman and Zlotnik
2013), to continental or global (Condon and Maxwell
2019; de Graaf et al. 2019; Liu et al. 2019).

Strengths. Numerical models are often consid-
ered the “gold standard” of streamflow depletion
assessment because they can evaluate the impacts of
multiple scenarios caused by simultaneous changes
in pumping, climate and land cover, be more readily
tested via comparison to field data, and provide a rig-
orous framework for causation and uncertainty anal-
ysis (Hill and Tiedeman 2006; Barlow and Leake
2012; Knowling et al. 2019). As a result, numerical
models are widely used management tools. As numeri-
cal models are based on the physical representation of
hydrological processes and simulate both the storage
and flux of water throughout the groundwater and
interconnected surface water system, they are more
flexible than analytical models. Processes such as
vadose zone dynamics, phreatophytic evapotranspira-
tion, and surface water management can be directly
included within a numerical modeling framework to
estimate their separate or combined impact on stream-
flow (Markstrom et al. 2008; Condon and Maxwell
2013; Brookfield and Gnau 2016; Zipper et al. 2017;
Tolley et al. 2019), and data associated with each of
these processes can be assimilated into the model dur-
ing the history matching process (Camporese et al.
2010; Naz et al. 2019; Fienen et al. 2021).

Numerical models are typically discretized into
grid cells or elements that cover the domain or inter-
est so that each of these hydrological processes can
be simulated in three spatial dimensions and through
time. This process-based representation allows for
explicit testing and evaluation of causal mechanisms
because (for example) the effects of a pumping well
on groundwater storage, streamflow depletion, evapo-
transpiration, and recharge can be estimated in a
single simulation. In addition, the process-based
representation allows users to estimate model uncer-
tainty and identify key parameters and processes that
contribute to uncertainty (Ferr�e, 2017; Knowling
et al. 2019, 2020). Since management decisions
require evaluating costs, benefits, and risks, numeri-
cal models subjected to thorough uncertainty analysis
can allow water managers to discriminate among
competing conceptual models, reduce uncertainty
through the collection of additional data, and assess
the risk of undesirable outcomes (Ferr�e, 2017; Leaf
2017; Enemark et al. 2019).

Weaknesses. Numerical models’ complexity rela-
tive to the other approaches also introduces several
limitations related to the data, computational, and
human resources needed to develop numerical models
appropriate for streamflow depletion assessment.
Numerical models require hydrostratigraphic data at
all grid cells or nodes (which can number from hun-
dreds to millions), as well as appropriate
parametrization for any other processes included in
the simulations such as streambed properties or
evapotranspiration. This requires substantial user
input and expertise, including the need to make
numerous subjective decisions about the processes
included and how they are represented, which has
been referred to as “the art of environmental simula-
tion” and is developed through training and experi-
ence (Doherty and Simmons 2013). Often, limited
field observations mean that these values are esti-
mated from a small number of locations and extrapo-
lated widely across the domain and/or derived from
look-up tables, though ever-increasing availability of
local, regional, and global-scale hydrometeorological
and hydrogeological data is helping to address this
challenge. Nonetheless, the high data need relative to
data availability in many settings can mean that par-
ties whose water use is affected by the outputs of the
model may be concerned that the numerical model
does not accurately reflect their particular context
(e.g., Wardropper et al. 2017).

For a numerical model to be confidently used in
streamflow depletion assessment, history matching
should be performed to ensure that simulated base-
flow and hydraulic head agree with observations at
numerous points within the domain and for a range
of different pumping conditions (Hill 2006; Hill and
Tiedeman 2006). Given the highly parameterized nat-
ure of numerical models and the fact that models can
never exactly characterize the hydrologic system,
they are typically nonunique, meaning that many dif-
ferent parameter combinations can provide equally
good agreement with observations and can lead to
uncertainty when testing scenarios outside the model
calibration conditions (sometimes referred to as the
“equifinality hypothesis”; Konikow and Bredehoeft
1992; Beven 2006; Hunt et al. 2020). This has precipi-
tated a recent shift in the discipline toward
ensemble-based model development that seeks to con-
nect uncertainty between model inputs and outputs
(e.g., Foster et al. 2021; White, Hemmings, et al.
2021), rather than calibration-focused strategies that
seek to identify a single set of “correct” parameter
values. However, calibration-focused strategies con-
tinue to be widespread and models developed in the
past using these strategies continue to be used, and
can lead to a false sense of accuracy in contexts with
equifinality because the model can match historical
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data well and appear highly realistic even if pro-
cesses and parameters are incorrect (Doherty and
Moore 2020). Adopting a “forecast first” workflow,
where scenario forecasting efforts are iteratively inte-
grated with model development and calibration
(White 2017), can be valuable as they allow model
creators to determine whether additional model com-
plexity and calibration provide improved forecasts,
thus ensuring that forecasts provide acceptable
uncertainty for decision-makers to assess risk of
undesirable outcomes relative to costs and benefits of
a management action (Doherty and Simmons 2013).

Furthermore, increasing data availability is
enabling calibration methods based on numerous tar-
gets such as groundwater head, evapotranspiration,
and land surface temperature to provide a more
robust approach for streamflow and groundwater
head prediction compared to calibration based on
head and discharge alone (Stisen et al. 2018). For
example, Hunt et al. (2020) found that including both
hydraulic head and fluxes in model development sub-
stantially improved history matching and forecasting
capabilities compared to using hydraulic head alone,
and that multivariate or multiobjective model calibra-
tion approaches can reduce overfitting even in highly
parameterized models when the practitioner has suf-
ficient deep knowledge and expertise to implement
appropriate parameter regularization techniques (see
also Moore and Doherty 2006). The use of multiple
evaluation datasets is becoming more prevalent with
the widespread use of integrated hydrologic models
and the increasing amount of hydrological data
(Schreiner-McGraw and Ajami 2020).

The ability to capture depletion dynamics depends
heavily on the temporal and spatial resolution of the
model. While a more refined grid provides greater
detail on depletion dynamics, it can increase computa-
tional demand, potentially making simulations infeasi-
ble. Numerical models rely on the convergence of the
flow solution to within some user-defined head thresh-
old, which means that regional-scale numerical models
are often poorly suited for estimating the impacts of
an individual well, particularly in large domains,
because they cannot estimate depletion that is less
than the model’s mass balance error (Leake et al.
2010). This further reinforces the point that decision
support models should be specifically designed for the
management action under consideration, rather than
developing a single model for a region that is then
used to answer a variety of different management
questions (Doherty and Moore 2020).

Finally, some numerical modeling platforms (i.e.,
HydroGeoSphere, FEFLOW, COMSOL) are propri-
etary, which limits transparency and reproducibility of
any analysis done using these platforms by other
users. The most widely used numerical modeling

platform (MODFLOW) as well as many emerging
approaches (i.e., GSFLOW, ParFlow) are open source
and are well-suited for streamflow depletion in
decision-making. There are also many emerging open-
source tools for the reproducible creation and analysis
of numerical models (Bakker et al. 2016; White et al.
2016, 2018; Gardner et al. 2018; Ng et al. 2018; Fie-
nen et al. 2021; White, Hemmings, et al. 2021).

Emerging Approaches. Numerical models con-
tinue to evolve as computational resources, data, and
understanding of hydrologic systems advance. Rele-
vant to managing streamflow depletion, integrated
hydrologic models that capture flow and transport
dynamics across the hydrologic cycle are increasingly
incorporating anthropogenic activities, such as
groundwater pumping, surface water diversions,
reservoir management, and economic factors (Morway
et al. 2016; Brookfield et al. 2017; Niswonger et al.
2017; Boyce et al. 2020; Rouhi Rad et al. 2020). Some
of these models incorporate water operational rules
and constraints, thereby integrating water manage-
ment decision-making into numerical models (Brook-
field and Gnau 2016; Morway et al. 2016; Brookfield
et al. 2017). This integration allows the co-evolution
of hydrological, ecological, management, and societal
conditions, rather than dependence on static bound-
ary conditions and sources/sinks (Srinivasan et al.
2017; O’Keeffe et al. 2018; Konar et al. 2019). Exam-
ples include the Agricultural Water Use package for
MODFLOW and GSFLOW, which can be used to esti-
mate agricultural water use and resulting streamflow
depletion impacts (Niswonger 2020); the MODFLOW
Farm process (Schmid and Hanson 2009); incorpora-
tion of a water allocation module into an integrated
hydrologic model, ParFlow-CLM (Condon and Max-
well 2013); inclusion of surface water operations and
surface water and groundwater extraction in Hydro-
GeoSphere (Brookfield et al. 2017; Hwang et al.
2019); Spain’s AQUATOOL decision support system
which couples water allocation, quantity, quality, and
routing (Paredes-Arquiola et al. 2010; Pedro-
Monzon�ıs et al. 2016); and coupling of MODFLOW
with the reservoir-operations model MODSIM (Mor-
way et al. 2016).

Hydrologic models are also integrating and improv-
ing upon vegetation dynamics, allowing the models to
better predict water demand and crop yields, which
drive irrigation, in future climate and policy scenar-
ios. For example, integration of crop growth and irri-
gation modules in the Variable Infiltration Capacity
model (VIC-CropSyst) improved hydrologic simula-
tions in agricultural watersheds (Malek et al. 2017).
HydroGeoSphere recently incorporated on-demand
irrigation into their modeling framework, which trig-
gers groundwater extraction during the user-defined
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growing season when the pressure head at a specified
location and depth declines below a prescribed level.
Coupling of the widely used Soil Water Assessment
tool (SWAT) with MODFLOW and groundwater
solute reactive transport model RT3D (SWAT-
MODFLOW-RT3D) has increased broader applicabil-
ity of the model in regions with conjunctive water use
or groundwater contamination (Wei et al. 2019).

Since complexity is one of the primary challenges
for numerical model development and use, several
promising emerging approaches seek to balance the
advantages of improved process representation in
numerical models while minimizing model complexity
and runtime. For example, surrogate models are sim-
plified models focused on the dominant features of a
groundwater problem of interest to allow for more
robust sensitivity analysis and scenario exploration
than numerical models (Razavi et al. 2012; Asher
et al. 2015). Hierarchical approaches to surrogate
modeling exclude some processes and therefore have
a faster model runtime while maintaining a high
level of accuracy. For instance, in streamflow deple-
tion studies it may be acceptable to simplify the rep-
resentation of unsaturated zone processes, which can
have substantial computational costs, if pumping is
not expected to substantially change groundwater
recharge. Data-driven approaches to surrogate model-
ing, also referred to as “metamodeling,” train statisti-
cal models on the input and output data from
numerical models and then use the simpler statistical
models for scenario assessment. Metamodels have
recently emerged in the groundwater community and
can be incorporated into decision support systems for
streamflow depletion scenario analysis (Fienen,
Nolan, et al. 2015, 2016; Fienen et al. 2018; Starn
and Belitz 2018). However, both of these surrogate
modeling approaches are still only feasible in loca-
tions where numerical models already exist.
Spreadsheet-based approaches provide a simplified
interface for creating and developing finite-difference
numerical models with a lower data and expertise
requirements while still retaining strong process rep-
resentation that allows for examination of multiple
processes simultaneously (Robinson 2020), and there-
fore provide a promising intermediate-complexity
approach between numerical and analytical models.

Example Use in Management. Numerical mod-
els have been used to estimate streamflow depletion
in many settings around the world. One example is
the Republican River Compact Administration
groundwater model (RRCA 2003), which is a MOD-
FLOW model used to make water allocation decisions
among the states of Colorado, Nebraska, and Kansas.
The original 1943 Republican River Compact allo-
cated the distribution of water among subbasins in

each of the three states, but did not explicitly address
how to account for streamflow depletion caused by
groundwater pumping. Following a U.S. Supreme
Court settlement between Kansas, Nebraska and Col-
orado, the interstate compact was modified to account
for streamflow depletion due to groundwater extrac-
tion, which is quantified using the groundwater flow
model jointly developed by the three states and fed-
eral government (RRCA 2003; Zipper, Gleeson, et al.
2021). Each year, the states submit estimates of
water supply and use, jointly evaluate the results of
water accounting, update the MODFLOW model to
estimate groundwater consumptive use and stream-
flow depletion across the basin, and assess compli-
ance with the terms of the Republican River compact
and legal settlements.

Statistical Assessments and Models

Overview. In contrast to analytical and numeri-
cal models, both of which model physical processes
using governing equations of water flow, statistical
approaches rely on interpolations, extrapolations, and
relationships among observed data to characterize
hydrologic states and fluxes. These statistical
approaches are based on physical hydrological pro-
cesses through the selection of relevant variables or
model structures that have the potential to reflect key
processes influencing streamflow. Therefore, adopting
a statistical approach does not lead to the exclusion of
physical process understanding, but merely means
that relationships among variables are not necessarily
controlled by governing equations such as Darcy’s
Law. There are numerous statistical approaches that
have been used or are relevant to streamflow depletion
assessment, and we adopt a broad definition to include
emerging data-driven approaches such as machine
learning within our discussion. Here, we distinguish
between statistical assessments, which analyze hydro-
logic variables (e.g., trend analysis), and statistical
models, which estimate hydrological variables (e.g.,
regression analysis).

Statistical assessments of streamflow depletion
typically quantify changes or trends in streamflow or
baseflow as well as changes or trends in potential dri-
vers such as groundwater pumping and precipitation,
and relate the two. For example, Kustu et al. (2010)
observed a spatial match between negative trends in
groundwater levels and streamflow across the U.S.
High Plains Aquifer and inferred a connection
between the two based on the absence of potential
explanatory precipitation trends, and Juracek (2015)
compared numerous gages in southern Kansas and
found significant decreasing streamflow trends in
basins with the greatest groundwater level decline
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and a lack of precipitation trends, which together
suggested that streamflow depletion was the cause of
observed streamflow trends. In Brazil, Lucas et al.
(2021) suggested streamflow depletion was leading to
a decline in baseflow due to a spatial agreement
between declining baseflow trends, increasing evapo-
transpiration trends, and irrigated agricultural land.
In contrast to statistical assessments, statistical mod-
els applied to streamflow depletion estimation typi-
cally attempt to quantify some relationship between
groundwater pumping and long-term changes in
streamflow and/or baseflow, often as one of several
predictors. For instance, Holtschlag (2019) included
irrigation in linear mixed models of summer water
yield for many watersheds in Michigan, allowing
them to determine whether it was an important pre-
dictor of streamflow; similar approaches have been
used elsewhere (Burt et al. 2002; Prudic et al. 2006).
Broadly, statistical assessments can identify potential
drivers of streamflow depletion, and the links identi-
fied through assessment can then be represented and
tested using more detailed approaches such as ana-
lytical, numerical, or statistical models.

Given the widespread availability of streamflow
and meteorological data relative to groundwater data,
there are numerous large-scale statistical assess-
ments documenting trends in hydrological signatures
that may be relevant to streamflow depletion. For
example, Ayers et al. (2019) calculated monthly base-
flow trends across the mid-western U.S. and found
significant negative trends in areas with widespread
groundwater pumping such as western Kansas and
Nebraska. In practice, statistical models are rarely
used for streamflow depletion management, largely
due to an inability to assess causal relationships and
responses to management actions, though the emerg-
ing data-driven statistical approaches discussed
below are promising potential tools that may improve
our ability to quantify, predict, and evaluate stream-
flow depletion.

Strengths. Statistical assessments and models
are diverse and have their own, individual strengths,
and weaknesses. However, we can generalize several
common strengths relative to analytical and numerical
models. In many other areas of hydrology, statistical
approaches are popular for their ease of application
and low data requirements (Farmer et al. 2014). While
these approaches have not been widely used for the
assessment of impacts and mitigation strategies in the
field of streamflow depletion, they have some charac-
teristics that may make them well-suited to these
tasks. Statistical approaches tend to be adaptable to a
wide range of potential data types and availabilities,
making them flexible across different domains. Statis-
tical approaches may be particularly useful in settings

where subsurface hydrostratigraphic data, which are
critical to accurate analytical and numerical model
development but are not essential to statistical models,
are unavailable. Similarly, statistical approaches are
flexible to a wide range of target metrics; for example,
statistical assessment and models can be used on any
hydrological signature derived from a hydrograph
(McMillan 2020), and therefore could effectively repre-
sent various aspects of the local hydrological response
to pumping. This information is particularly valuable
where there may be specific flow conditions or metrics
with high relevance to either management or ecologi-
cal outcomes (Yarnell et al. 2020), as the statistical
models can be developed to specifically predict hydro-
logical signatures that are most relevant to needed
management decisions.

Additionally, statistical approaches generally have
lower computational requirements than numerical
models, though for some data-intensive applications,
statistical model training can be computationally
demanding. This means that they are well-suited for
conducting large numbers of simulations necessary for
accurate calibration, sensitivity and uncertainty analy-
sis, and to develop probabilistic estimates. Statistical
models are capable of quantifying uncertainty in hydro-
logical predictions and the underlying parameters and
processes that contribute to uncertainty (Pathiraja
et al. 2018; Fang et al. 2020; Piazzi et al. 2021), though
this type of analysis has not been done (to our knowl-
edge) in a streamflow depletion context to date.

Weaknesses. Statistical approaches have been
widely used to quantify hydrologic states and fluxes,
but have rarely been used to quantify streamflow
depletion (Barlow and Leake 2012). This is largely
because streamflow depletion is damped and lagged
relative to groundwater pumping due to the diffusiv-
ity of the groundwater system and distance of a
stream from the point of withdrawal, and further
obscured by natural hydrometeorological variability
and other human activities that affect streamflow
(i.e., land use change, reservoir operations), making
statistical quantification of the direct causal link
between pumping and streamflow change hard to
detect. Statistical approaches are particularly chal-
lenging in settings where hydrologic data are not
available prior to the onset of groundwater pumping,
and where long-term groundwater pumping data are
not available. To fill these gaps, developing relation-
ships with proxies for groundwater use — such as
crop evapotranspiration derived from remote sensing
(Foster et al. 2019) — may be necessary for the wide
application of statistical models to approximate
streamflow depletion, though care should be taken to
account for potential errors and uncertainty in proxy
datasets (Foster et al. 2020). In settings where causal
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attribution is impossible, statistical assessments can
detect locations of potential streamflow depletion and
infer potential drivers based on system understand-
ing and available evidence (Wahl and Tortorelli 1997;
Prudic et al. 2006; Penny et al. 2020), but additional
methods (such as numerical models) would be needed
to explicitly develop causal links between groundwa-
ter pumping and changes in baseflow or streamflow
that are needed for evaluating attribution, impacts,
and mitigation decisions.

While statistical approaches are highly flexible,
they are constrained by the available data and the
conditions represented by that data. The ability of a
statistical model to represent the needed level of detail
or at the required resolution of space and time is
dependent on the availability of appropriate data to
characterize the objectives at the required detail and
resolution. Statistical models, also called data-driven
models, are often limited in scope because they rely on
available data for a specific objective. The objective
may, of course, be far reaching, and the statistical
model will require appropriate data to learn from.

Just as numerical and analytical models are cali-
brated to specific objectives, statistical models are
designed around specific objectives. Unlike numerical
and analytical models, statistical models often lack
the explicit representation of processes that support
extrapolations beyond the model’s original design.
For example, a numerical model may be designed to
estimate streamflow depletion at a particular stream
gage and calibrated to reproduce this value accu-
rately; in doing so, as a product of its process repre-
sentation, this model may also produce by-products
like estimated groundwater storage. A statistical
model with the same calibration target may achieve
similar accuracy, but may not produce other targets
not specified in the objective function. However, like
numerical models, uncertainty analysis of statistical
models can be used to quantify uncertainty associated
with forecasts outside of training conditions and iden-
tify the major contributors to that uncertainty. In
many cases, uncertainty-centered workflows developed
for numerical models, such as the “forecast first” work-
flow to modeling discussed in the “Numerical Models”
section above (White 2017), could be directly adapted
to integrate into statistical modeling workflows.

Emerging Approaches. Determining causality
between groundwater pumping and streamflow deple-
tion is challenging with traditional statistical regres-
sion models and is a primary reason that they have
not been used extensively in streamflow depletion
assessments. Randomized controlled experiments
used to identify causal relationships are often imprac-
tical, if not impossible, in hydrology (Runge et al.
2019; Ombadi et al. 2020). However, the ever-

growing amount of observational data from sources
such as stream gages, climate datasets, and remote
sensing provides an opportunity to adapt existing
and emerging econometric methods useful for identi-
fying causal relationships from observational data
(e.g., Athey and Imbens 2017). Although there have
been recent applications of causal inference to hydro-
logical questions such as estimating streamflow
reductions from deforestation (Levy et al. 2018), link-
ing changes in impervious cover to changes in flood
events (Blum et al. 2020), or assessing the impact of
groundwater policy on pumping and water levels
(Deines et al. 2019), these techniques have not yet
been used for streamflow depletion assessments to
our knowledge. Causal inference methods that would
be well-suited to streamflow depletion include (1)
difference-in-differences comparisons with appropri-
ate analogs that can serve as a control, similar to
paired-catchment studies (Kim et al. 2017; Reichert
et al. 2017); (2) Granger causality (Granger 1969),
which tests whether including a variable (e.g., pump-
ing) improves predictions of the outcome (e.g.,
streamflow or baseflow); and (3) statistical construc-
tions of “counterfactual” scenarios. For streamflow
depletion estimation, these counterfactual methods
(e.g., synthetic controls, Abadie et al. 2010 or causal
impact, Brodersen et al. 2015) could use pre and post-
pumping relationships among streamflow in the area
of interest and streamflow in nearby streams unaf-
fected by pumping, along with covariates such as pre-
cipitation, to estimate what streamflow would have
been in the absence of pumping as a counterfactual.
Differences between observed streamflow and this
counterfactual can then be attributed to streamflow
depletion. Counterfactual methods have been used else-
where to isolate impacts of climate and land use
change on streamflow (Gao et al. 2016; Zhang et al.
2016; Zipper, Motew, et al. 2018). More information
about causal inference methods is available in several
recent reviews (Athey and Imbens 2017; Runge et al.
2019; Ombadi et al. 2020). Ultimately, an effective use
of causal inference requires thoughtful design and
interpretation to match appropriate methods for the
study system, account for confounding variables, and
couch conclusions within the limitations of the method.

Machine learning, including deep learning, is
another emerging statistical approach with potential
applications for streamflow depletion estimation and
causal inference because machine learning methods
can control for many potential covariates (Athey and
Imbens 2017). Machine learning models more easily
ingest and process large amounts of data compared to
other statistical approaches and have the ability to
detect unexpected patterns between data points
(Nearing et al. 2020). Recent applications have shown
the ability of machine learning models to provide
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better predictions than physically based hydrological
models of daily streamflow in both gaged and
ungaged locations (Kratzert, Klotz, Herrnegger, et al.
2019; Kratzert, Klotz, Shalev, et al. 2019). While
machine learning methods have been applied sepa-
rately to estimate groundwater levels (Sahoo et al.
2017), groundwater use (Majumdar et al. 2020),
streamflow change (Zipper, Hammond, et al. 2021),
and surface water metrics (Worland et al. 2018), to
the best our knowledge, they have not been applied
to streamflow depletion (though machine learning
techniques have been used for metamodeling of
streamflow depletion trained on numerical model out-
put, as described in the “Numerical Models” section).
Simple machine learning techniques such as random
forests have the advantages of (1) allowing for many
predictors with nonlinear relationships to the
response variable, (2) not being constrained by our
current best understanding of process across scales,
(3) reasonable transparency and interoperability
through variable importance analysis, and (4) strong
performance in prediction mode with reproducible
uncertainty estimates (Addor et al. 2018).

Despite these strengths, random forests and other
machine learning techniques are limited by their
inability to extrapolate beyond the range of values in
the input data (Beven 2020), which is problematic
when the potential system stresses being analyzed,
such as pumping scenarios, exceed what has been
experienced in existing monitored conditions. Addi-
tionally, a lack of transparency in machine learning
models can make them difficult to interpret, they
require large input training datasets, and predictions
can be highly sensitive to small perturbations in
input under certain circumstances (Shen 2018). For a
problem as complex as estimating streamflow deple-
tion, process-guided deep learning in which the model
is penalized for violating physical laws (e.g., Read
et al. 2019) could prove useful. Machine learning may
be especially useful for estimating streamflow deple-
tion due to their ability to identify connections
between seemingly unconnected variables, which is
valuable given that the groundwater pumping data
are rarely monitored or available (Foster et al. 2019).

Example Use in Management. Australia’s
National Water Initiative in 2004 required conjunc-
tive management of interconnected surface water and
groundwater (Ross 2018). To meet this need in Aus-
tralia’s Murray-Darling basin, which covers >1 mil-
lion square kilometers, a joint approach combining
numerical and statistical models was developed
through the Murray-Darling Sustainable Yields Pro-
gram and is described in Rassam et al. (2008).
Because of the size and complexity of the Murray-
Darling Basin, as well as the presence of existing

surface water and groundwater models for parts of
the basin, a single basin-wide integrated numerical
model was not available or feasible to develop.
Instead, to assess impacts of pumping on streamflow
the program used existing or developed new numeri-
cal groundwater models for high priority subbasins
(those with the greatest groundwater extraction and
largest likely impacts on streamflow), and for lower
priority basins used a statistical model. This mixed
numerical-statistical approach was enabled by a sub-
stantial amount of long-term data available for the
Murray-Darling Basin that was used to parameterize
and evaluate both the numerical and statistical mod-
els. The statistical model estimates streamflow deple-
tion as a function of the pumping rate, time since
pumping began, and an empirical connectivity factor
(Rassam et al. 2008). Effectively, the connectivity fac-
tor is equal to the proportion of pumping that is
expected to be sourced from streamflow depletion over
long time scales, where a lower value indicates less
streamflow depletion caused by a given pumping vol-
ume (Walker et al. 2020a). This statistical model is
then used to evaluate whether changes in pumping,
for example caused by climate change, may impair riv-
ers beyond sustainable diversion limits that are set at
the basin and catchment levels (Walker et al. 2020b).

CHOOSING A STREAMFLOW DEPLETION
ESTIMATION APPROACH

Earlier, we identified four general characteristics
of a successful streamflow depletion estimation
approach: it should be well-suited to local conditions,
actionable, transparent, and reproducible. Here, we
evaluate analytical, numerical, and statistical models
as they relate to these characteristics and with respect
to common streamflow depletion management ques-
tions (Table 1). Since any well-documented approach
can be made both transparent and reproducible (with
the exception of proprietary software or tools, as noted
above), the primary factors to consider should be the
degree to which an approach is well-suited to local
conditions and is actionable. In practice, this requires
that the approach adequately accounts for the diverse
potential drivers of streamflow change (well-suited),
and the approach can provide estimates of streamflow
depletion and associated uncertainty with the data,
expertise, and resources available (actionable).

Suitability and actionability can be balanced by fol-
lowing the parsimony axiom that the approach cho-
sen should be as simple as possible, but no simpler
(Figure 3). For streamflow depletion, a well-suited
approach should be sufficiently detailed to account
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for all relevant processes affecting streamflow deple-
tion to avoid errors caused by model inadequacy,
while avoiding the inclusion of irrelevant processes to
minimize poorly constrained parameters and feed-
backs to avoid propagation error (Hill and Tiedeman
2006; Saltelli 2019). To be actionable, the producer of
the depletion estimates should be familiar with the
strengths and weaknesses of the approach, and have
sufficient skill and resources to provide estimates of
uncertainty caused by parameters narrow enough to
guide decision-making and assimilate available data
to minimize this uncertainty (Doherty and Simmons
2013). Figure 3 illustrates the principal by showing
how increased model complexity decreases inade-
quacy error (generally associated with improved
model fit to data) and eventually increases propaga-
tion error (generally associated with inaccurate pre-
dictions and tested using data not included in model
development).

Balancing model simplicity and complexity is chal-
lenging and the subject of substantial discussion in
the decision support modeling community. Past work
has found that oversimplified models can underesti-
mate uncertainty and bias model predictions, which
hinders effective decision-making (Knowling et al.
2019), though stochastic statistical approaches can
improve the simulated distribution of this bias
(Farmer and Vogel 2016). In practice, finding this
balance is tricky and facilitated by experience with
the technique being used, regional hydrologic exper-
tise, and rigorous uncertainty analysis that identifies
the processes and parameters contributing most to
uncertainty (White et al. 2016; Leaf 2017; Doherty
and Moore 2020).

Suitability primarily relates to the match between
the management question being asked, the resources
available, and the capabilities of each method
(Table 3). For questions related to attribution (“Does
pumping contribute to observed decreases in stream-
flow and, if so, how do pumping impacts compare to
wother drivers of change?”), numerical and statistical
models are generally better-suited than analytical
models. Both approaches can be designed to account
for other potential drivers of streamflow change (such
as land use or climate change). In contrast, analytical
models are typically focused on groundwater pumping
and do not include any other processes. Comparing
between numerical and statistical models, numerical
models can estimate causation more directly due to
the representation of process-based links between dif-
ferent aspects of the interconnected stream–aquifer
system, while statistical models typically provide cor-
relative results (though emerging statistical causal
inference methods may be able to overcome this limi-
tation with further research; see, for example, Levy
et al. 2018; Blum et al. 2020).

The three approaches have similar suitability
strengths and weaknesses for questions related to
impacts (“What are the implications of streamflow
depletion for water users, ecosystems, and society?”)
and mitigation (“How can streamflow depletion be miti-
gated?”). Analytical models are best-suited for assess-
ing the impacts of a single well, while numerical and
statistical models are better-suited for answering ques-
tions about regional-scale impacts of numerous pump-
ing wells. Regardless of the approach used, it is critical
that the estimation model is designed to match the
management question and decision criteria. For exam-
ple, regional numerical models are not well-designed
for assessing streamflow depletion from a single well
because their grid size typically does not allow suffi-
cient spatial refinement to accurately capture fine-scale
dynamics, and they can only detect impacts that
exceed the mass balance error of the model (Konikow
and Bredehoeft 1992; Mehl and Hill 2010). For a single
well, localized numerical models with fine grids and
tight solver criteria can be developed (Feinstein et al.
2016). Numerical models tend to be best-suited to
explore spatially and temporally distributed impacts of
pumping on multiple aspects of the hydrological and
broader socioenvironmental system because they can
include explicit process-based coupling among different
processes (i.e., streamflow depletion, phreatophytic
evapotranspiration, groundwater depletion) and are
increasingly coupled to other models such as agent-
based or economic models (Castilla-Rho et al. 2015,
2017; Hu et al. 2017; Rouhi Rad et al. 2020).

Where there is a specific management target, sta-
tistical models may be advantageous since they can
be developed for that metric and therefore bypass
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complexity associated with other aspects of the sys-
tem. For example, if management decisions require
understanding how pumping will change 10th per-
centile annual streamflow, there is no need to simu-
late impacts on daily or monthly streamflow,
significantly reducing statistical model complexity
and allowing rigorous uncertainty and sensitivity
analysis associated with this hydrologic signature.
This is in contrast to numerical models which need to
proceed through a more complete representation of the
entire hydrological cycle, which means that statistical
models can be significantly less complex but may also
be more narrowly focused. Additionally, if estimates
are needed for different climate conditions (past or
future), it is critical that the approach selected
acknowledges and, ideally, accounts for hydrologic
nonstationarity associated with climate change (Milly
et al. 2008; Rissman and Wardropper 2020).

Actionability, on the other hand, is driven by the
availability of data, resources, and expertise. In gen-
eral, as model complexity increases, so to do the data
and resources required for their applications. In gen-
eral, analytical models have the lowest complexity,
statistical models have intermediate complexity, and

numerical models can be the most complex, though
there is substantial variability within each of these
three broad categories (Figure 4). Interestingly,
Addor and Melsen (2019) showed that the choice of
hydrological models is strongly influenced by the
training and institution of the modeler (Addor and
Melsen 2019), and it is therefore likely that expertise
and preferred methods will vary across water man-
agement areas based on their region, staff, and his-
tory. However, analytical models tend to require less
expertise to develop and implement than numerical
models, which may make them feasible in resource-
limited locations (Zipper, Dallemagne, et al. 2018).
Analytical, numerical, and statistical models would
all benefit from improved data collection for key
streamflow depletion processes, in particular the loca-
tion, volume, and timing of groundwater withdrawals
which are often only available in very well-monitored
or studied regions (Foster et al. 2019).

Overall, the choice of approach depends on the ques-
tion at hand and processes represented. When the
focus of study is the impacts of a single well on a single
stream, then analytical models are likely to be the best
tool for the job. For questions regional in scale,

TABLE 3. Nonexhaustive list of major pros and cons of streamflow depletion estimation approaches for types of management questions.

Question Analytical models Numerical models Statistical models

Attribution: Does pumping
contribute to decreases
in streamflow and,
if so, how do pumping
impacts compare
to other drivers
of change?

PRO: can estimate potential
contribution of pumping
to streamflow change,
and see whether it is
comparable in magnitude
to observed change

CON: cannot assess
other potential drivers
of streamflow change

PRO: can do causal assessment
of different potential drivers
of streamflow change

CON: large user input data
requirements and challenging
to calibrate/validate

PRO: able to account for many
potential drivers of change
(land use change, etc.) as
covariates in addition to pumping

CON: typically provide correlative,
rather than causative, results,
which limit ability to make
attributive claims

Impacts: What are the
implications of streamflow
depletion for water users,
ecosystems, and society?

PRO: simple, straightforward
depletion estimate
with minimal data input
allows for rapid
impact assessment

CON: does not account for
complex feedbacks, e.g.,
associated with changes in
recharge due to
return flows

PRO: can explore spatially
distributed impacts of pumping
on streamflow and other parts
of the socioenvironmental
system (groundwater depletion,
phreatophytic evapotranspiration)

CON: complex model structures
challenging to integrate with
other system and/or
socioeconomic models

PRO: flexible to different input
datasets and target metrics,
including target metrics that
cannot be simulated by other
approaches

CON: only provide information
about target metrics; often do
not provide spatiotemporal
granularity of other approaches

Mitigation: How can
streamflow depletion
be mitigated?

PRO: provide transient
estimates of changes
in streamflow
expected for different
pumping scenarios

CON: cannot provide information
about anything except pumping
(unable to assess land
use change impacts, etc.)

PRO: allow for exploration of
diverse scenarios related to
land use, climate change,
augmentation, etc., including
rigorous uncertainty and
risk assessment

CON: can appear realistic even
when processes are poorly
constrained; high
computational
cost can limit ability
to test scenarios

PRO: low computational costs allow
for rapid exploration of many
different scenarios and uncertainty

CON: challenging to conduct
“what-if” scenario analysis for
processes not included in model
structure, and lack of causality
in some approaches can limit
mitigation evaluation
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statistical or numerical models are likely to be more
suitable. Statistical models, which provide an interme-
diate level of complexity between numerical and ana-
lytical approaches, have not been widely used for
streamflow depletion estimation due to the lack of cau-
sal attribution but may be a promising area for future
development. Given the contrasting strengths and
weaknesses of the three approaches discussed above,
there is likely to be significant value in using multiple
approaches to help constrain estimates (Saltelli et al.
2020).

CONCLUSIONS

Reliable estimates of streamflow depletion are
essential for effective water management in settings
with interconnected groundwater and surface water
resources. We categorize common water manage-
ment questions into three groups based on water
management goals: (1) attribution, to understand
the potential drivers of changes in observed stream-
flow; (2) impacts, to understand the hydrological,
ecological, or socioeconomic ramifications of stream-
flow depletion; and (3) mitigation, to identify ways
that the impacts of streamflow depletion can be
reduced or minimized. Making management deci-
sions related to each of these goals requires accurate
estimates of streamflow depletion, but quantifying
streamflow depletion is challenging because it cannot
be directly observed in typical hydrological data (i.e.,
streamflow hydrographs) and therefore is infeasible
to estimate using field techniques at scales larger
than a single stream reach. Due to these difficulties,
there has historically been a lack of consistent
streamflow depletion regulatory frameworks, which

has caused local water managers to make decisions
on a case-by-case basis.

In this study, we provide an updated review of
analytical, numerical, and statistical approaches for
regional-scale streamflow depletion estimates. From
this effort, we developed criteria that water managers
can use to select an appropriate and feasible
approach for their needs based on suitability, action-
ability, transparency, and reproducibility. The
approach selected should be well-suited to local condi-
tions, produce actionable information relevant to the
water management question under consideration, be
transparent to affected parties such as water users,
and be reproducible so it can be evaluated and used
by others not involved in the quantification process.

We then used these criteria to evaluate analytical,
numerical, and statistical models, finding that the
strengths and weaknesses of each approach vary
based on the management question being addressed.
Analytical models are well-suited for rapid, screening-
level assessments of potential impacts and implica-
tions of streamflow depletion, but they struggle with
questions related to attribution and mitigation since
they rarely include other processes that could affect
streamflow. Numerical models are particularly well-
suited for understanding impacts of pumping and miti-
gation for streamflow depletion because they can
include quantitative links among many different pro-
cesses and are increasingly coupled to models repre-
senting other aspects of the local social and
hydrological system. Numerical models are currently
the gold standard for streamflow depletion estimation,
but can be infeasible in many settings with limited
resources. Statistical approaches have not seen wide
use for streamflow depletion estimation compared to
analytical or numerical approaches because they typi-
cally provide correlative, rather than causative, output
and therefore struggle with questions related to
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attribution and impacts. However, emerging statistical
methods for causal attribution may become a new tool
in the water management toolbox, and with further
development could provide a valuable intermediate-
complexity approach for streamflow depletion estima-
tion to fill the gap between simple analytical models
and complex numerical models. Additionally, blended
approaches (i.e., developing statistical metamodels to
interpret and extend numerical model output) can
leverage the strengths of multiple types of approaches
and hold promise for future use.

Regardless of the approach selected, it is critical to
calculate and communicate the uncertainty associ-
ated with streamflow depletion estimates, particu-
larly when extrapolating any approach beyond the
conditions in which it was developed (i.e., scenario
assessment). By being transparent about strengths,
weaknesses, and uncertainties, affected parties will
better understand the logic behind decisions and can
serve as a bridge to participatory approaches to
streamflow depletion estimation that can enhance
both scientific quality and societal impact.

APPENDIX

WATER MANAGER FEEDBACK

To help guide this manuscript toward relevant,
actionable information, we had conversations with
five different water managers asking for their feed-
back on an earlier draft of the manuscript. In these
conversations, we shared a draft version of the manu-
script and an executive summary of the key points,
with the following conversation prompts in advance:

1. What types of decisions or recommendations do
you make related to streamflow depletion?

2. What do you use — data, software, equations, or
other tools — to make those decisions?

3. What barriers have you encountered to using
streamflow depletion information for decision-
making?

4. Please look at the figure on page 1 (note: this is
the current Figure 2). What about this figure
aligns with your own decision process? What is
different? What are we missing?

5. What information would make this paper most
useful to people like you?

6. Any other thoughts or comments?

These questions provided a basis for the conversa-
tion, but we allowed the water managers to focus on

aspects that were most interesting and relevant to
them, so not all questions were directly addressed in
all conversations.
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