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Abstract

Our ability to fully and reliably observe and simulate the terrestrial hydrologic

cycle is limited, and in-depth experimental studies cover only a tiny fraction of

our landscape. On medieval maps, unexplored regions were shown as images of

dragons—displaying a fear of the unknown. With time, cartographers dared to

leave such areas blank, thus inviting explorations of what lay beyond the edge of

current knowledge. In hydrology, we are still in a phase where maps of variables

more likely contain hydrologic dragons than blank areas, which would acknowl-

edge a lack of knowledge. In which regions is our ability to extrapolate well

developed, and where is it poor? Where are available data sets informative, and

where are they just poor approximations of likely system properties? How do we

best identify and acknowledge these gaps to better understand and reduce the

uncertainty in characterizing hydrologic systems? The accumulation of knowl-

edge has been postulated as a fundamental mark of scientific advancement. In

hydrology, we lack an effective strategy for knowledge accumulation as a com-

munity, and insufficiently focus on highlighting knowledge gaps where they

exist. We propose two strategies to rectify these deficiencies. Firstly, the use of

open and shared perceptual models to develop, debate, and test hypotheses. Sec-

ondly, improved knowledge accumulation in hydrology through a stronger focus

on knowledge extraction and integration from available peer-reviewed articles.

The latter should include metadata to tag journal articles complemented by a
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common hydro-meteorological database that would enable searching, organizing

and analyzing previous studies in a hydrologically meaningful manner.

This article is categorized under:

Engineering Water > Planning Water

Science of Water > Hydrological Processes

Science of Water > Methods
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large-scale hydrology, uncertainty, perceptual model, metadata, machine learning

1 | INTRODUCTION

Humanity has always been uncomfortable with knowledge gaps. When the explorer John Cabot left Bristol harbor in
1497 to chart a new route to Asia, he was trying to fill a knowledge gap of European geographers (and filled a different
one—the existence of North America—by accident). Such attempts to meet key knowledge gaps had not been common at
the time, a circumstance nicely visualized in the example of two maps. In his macro-history of humanity, Harari (2015)
discusses two world maps produced by European cartographers that, while being drawn within less than 100 years of each
other, were separated by key events including the voyages of John Cabot and Christopher Columbus (Figure 1). The Fra

FIGURE 1 (a) The Fra Mauro world map (Italy, 1459) shows seemingly complete knowledge of the world. However, on closer

inspection, maps like this one included statements like HIC SUNT LEONES and images of monsters in unexplored regions. (b) The Salviati

Planisphere is a world map (Spain, 1525) without imagined representations, highlighting knowledge gaps. Source: Wikipedia, https://en.

wikipedia.org/wiki/World_map (accessed March 2020)
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Mauro world map from 1459 shows the world in great detail with hundreds of illustrations and thousands of descriptive
texts (Figure 1a), which is surprising given the poor state of knowledge about the world at the time. Looking more closely,
however, one finds that this one and other maps from the period included imagined representations in unexplored
(unknown) areas. Indeed, it was customary practice at the time to show monsters rather than to leave spaces empty—
suggesting that it is undesirable and dangerous to explore such places. Ancient Roman and Medieval mapmakers demar-
cated such unknown areas with the phrase HIC SUNT LEONES (“here are lions”) or alternatively with HIC SUNT
DRACONES (“here are dragons”), thus populating unknown areas with creatures that would instill fear in the reader
(Agostinho et al., 2019). Fewer than 100 years later the Salviati Planisphere map from 1525 (Figure 1b) not only shows
the newly found eastern coasts of North and South America, but also reveals empty space in thus far unexplored areas.
The 16th-century map reveals where knowledge gaps exist by daring to leave such areas blank, thus inviting explorations
to discover what lies beyond the edge of current knowledge. Rather than fearing ignorance, this step of acknowledging
the unknown became a scientific goal in itself—an important scientific belief in modernity.

In hydrology, we have seen our knowledge and analysis domain expand from the catchment to continental and
even global scales, increasingly with the help of large-scale hydrologic simulation models. Global hydrologic
models have emerged, not just any more as the endeavors of particularly brave scientists (e.g., Manabe &
Holloway, 1975), but rather as tools for regular scientific analysis and increasingly even as potential tools for water
resource management (Archfield et al., 2015; Bierkens et al., 2015; Straatsma et al., 2016). Hydrology is indeed
moving toward realizing elements of the “models of everywhere” idea of Beven—that is, modeling as a learning
process (Beven, 2001). At the same time, there is the hope for more realistic process representations through
hyper-resolution models (Clark et al., 2017; Maxwell & Condon, 2016; Wood et al., 2011), though the debate
regarding the best way to represent the physics of hydrologic processes in our models continues (Beven
et al., 2015). Global and continental-scale hydrologic models increasingly reveal human influence on global fluxes
of terrestrial sediments to the oceans (Syvitski et al., 2005), risks to global river biodiversity (Vörösmarty
et al., 2010), global depletion of groundwater resources (Wada et al., 2010), the relative impacts of groundwater
pumping on our rivers (De Graaf et al., 2019), global drivers of flood risk (Winsemius et al., 2016), impacts of
human activity on the global water cycle (Bosmans et al., 2017), and potential implications of climate change for
the global freshwater system (Döll et al., 2018).

Equally, we see the emergence of large-scale and even global data sets which add new dimensions to our ability to
analyze global hydrology (Beck, van Dijk, et al., 2019; Ghiggi et al., 2019; Lindersson et al., 2020). New global data sets of
physical system properties, such as subsurface hydrogeological properties, have been accumulated in recent years
(Gleeson et al., 2011; Huscroft et al., 2018). Various global precipitation data sets can be used to force hydrologic simula-
tion models (Beck, van Dijk, et al., 2019), while land surface fluxes have been regionalized from flux tower networks to
the global scale (Jung et al., 2011). Satellite data provide continuous time estimates of freshwater storage (Rodell et al.,
2018; Famiglietti et al., 2015) and the topographic characteristics of our land surface in a hydrologically meaningful man-
ner (Linke et al., 2019; Nardi et al., 2019; Yan et al., 2019), while remotely sensed observations of vertical fluxes are used
to create land surface water balances everywhere (Miralles et al., 2011). Increasingly, new global data sets of land cover
change and other human interventions in the water cycle are becoming available, such as artificial storage through reser-
voirs (Lehner et al., 2011; Mulligan et al., 2020). Widely used historical data such as river flows of the Global Runoff Data
Centre (Grabs et al., 1996) are complemented with hydrologic response data compilations like karst spring hydrographs
(Olarinoye et al., 2020). However, all of these data sets have their own issues and limitations as we stress further below.

The potential power of such large-scale data sets is maybe best exemplified by the tremendous success of machine
learning and other data-based approaches, which often outperform simulation models that are based on our mechanistic
understanding of how nature works (Kratzert, Klotz, Shalev, et al., 2019; Reichstein et al., 2019; Shen et al., 2018). For
example, Boers et al. (2019) find teleconnection patterns in global extreme rainfall by analyzing high-resolution satellite
data with the help of complex networks. Stolbova et al. (2016) managed to empirically predict the onset of the monsoon
two weeks further in advance than previous methods (including predictions from dynamic models). Addor et al. (2018)
used random forests to demonstrate the predictability of hydrologic signatures across the United States and showed that
signatures predictable from descriptors which vary smoothly in space, such as those related to climate, regionalize particu-
larly well. Machine learning tools have also been used widely to turn in-situ observations into global data sets. Jung
et al. (2011) used a machine learning strategy—model tree ensembles—to upscale Fluxnet observations of carbon dioxide,
water, and energy fluxes to the global scale. The ability of deep learning models to predict streamflow in gauged and
ungauged catchments has already been demonstrated (Kratzert, Klotz, Herrnegger, et al., 2019; Nearing et al., 2021).

So, what is the link between dragons and these aspects of hydrology? Relevant hydrologic quantities and proper-
ties as well as their uncertainties tend to be poorly determined by scarce historical observations away from areas
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where observations are concentrated (Beven et al., 2020). The Predictions in Ungauged Basins (PUB) initiative has
given us many examples that demonstrate this problem in the context of streamflow predictions (Hrachowitz et al.,
2013), and the study of hydrologic extremes has shown that much of the landscape we think we know is rather akin
to a terra incognita—unmapped regions (B. Merz et al., 2015). However, we also find that our models sometimes sea-
mingly work well in some regions without local calibration (Van Werkhoven et al., 2009), so it is not simply a ques-
tion of well-studied regions versus poorly studied ones. Large-scale or even global hydrology brings this problem
even more strongly to the forefront. In our endeavor to move to larger scales, we unavoidably move hydrologic inves-
tigation away from highly studied headwater catchments, hillslopes, aquifers, or Fluxnet sites to regions of poorly
explored and poorly characterized landscapes—relying on our ability to extrapolate with models instead (Fan
et al., 2019). But this presents a major challenge: How can we deal with such knowledge gaps or epistemic uncer-
tainties apart from hoping for potential new future measurement techniques? Large-scale outputs of hydrologic simu-
lation models or compiled data sets will unavoidably include hydrologic dragons rather than meaningful information
in some places. So, similar to map makers who drew the Salviati Planisphere map from 1525, we need to start dis-
tinguishing these areas so that they can be highlighted as “blank,” that is in need of further exploration. This is of
course not a question of information versus no information (truly blank space), because the space of possible hydro-
logic behavior or system properties is not completely unconstrained anywhere in the world (Beven, 2001;
Kirchner, 2006; Wagener & Montanari, 2011). It is rather a question of how much can we know, what is the basis for
this knowledge, and how confident are we in our knowledge?

So, while the combination of global models (both data-based and mechanistic) and global data sets undoubt-
edly offers tremendous opportunities for scientific advancement and for new scales of management, it also con-
tains hydrologic dragons, that is, knowledge gaps that are currently difficult to identify and address. Our
observations of hydrologic fluxes and storages do not allow us to characterize the water balance (especially sub-
surface properties) at the above-mentioned hyper-resolution (Beven et al., 2015; Beven & Cloke, 2012). Different
assumptions (poorly constrained by available information) still leave the potential for different conclusions when
using the same data, for example, that catchment-scale water balance errors are due to precipitation error (Beck,
Wood, et al., 2019) or due to subsurface losses (Liu et al., 2020). Global geological data show artifacts such as vari-
ability along administrative boundaries due to differences in processing underlying observations across adminis-
trative units (Gleeson et al., 2011). Pedotransfer functions based on soil texture classes, the basis for estimating
soil hydraulic properties used in many hydrologic and other models, have been derived from very limited and
biased empirical data, while ignoring structural soil characteristics (or 2019; Fatichi et al., 2020). So, it is not too
surprising that Gutmann and Small (2007) find soil texture only explains a small fraction (5% in their case) of the
expected variability of soil hydraulic properties. Similarly, Rosero et al. (2010) found that behavioral soil and veg-
etation parameters, derived as parameter sets through conditioning of the NOAH land surface model to observa-
tions from flux towers along a climatic gradient with varying soil and vegetation properties, correlated with the
climatic gradient, but not with soil or vegetation properties. These examples put a critical focus on the transfer
algorithms used to translate the actual measurement into hydrologically meaningful information. Most (if not all)
of our data sets are based on measurements subsequently processed through models for interpretation, interpola-
tion or extrapolation (Gupta & Nearing, 2014). They are therefore associated with their own (and often signifi-
cant) uncertainties with potentially significant consequences for subsequent use as we will discuss further below
(Kauffeldt et al., 2013; Yatheendradas et al., 2008). For example, J. Yang et al. (2013) provide a good discussion of
the uncertainties stemming from remote sensing measurements, as well as from the subsequent algorithms
needed to transform these measurements into the relevant variables for climate science. How often do we con-
sider or even just acknowledge the uncertainties in this processing chain where possibly unknown corrections are
made or poorly defined parameters are used in the algorithms? Are these data post-processing models sufficiently
realistic and do we sufficiently acknowledge this lack of realism where and when it occurs?

So how do we identify hydrologic dragons, and, more importantly, how might we overcome them given that they
originate from a lack of observations or even observational capability? In this brief commentary, we discuss two strate-
gies to address this question.

• A focus on perceptual models to pool and test our knowledge.
• Improved knowledge accumulation in hydrology.

Below we discuss each of these strategies and what role they play.
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2 | PERCEPTUAL MODELS TO POOL AND TEST OUR KNOWLEDGE AND
EXPERIENCE

We propose that a currently underutilized strategy to collect and share information (defined here as “data seen in a par-
ticular context”) as well as knowledge (defined here as “our understanding gained through experience”) valuable for
large-scale modeling and hydrology in general lies in openly shared and jointly evolved perceptual models. Perceptual
models in hydrology are defined by the evolving understanding of real-world system based on the interpretation of all
available information, influenced by each hydrologist's unique experience and training (Beven, 2001; Gupta et al., 2008;
Gupta et al., 2012; Seibert & McDonnell, 2002; Tetzlaff et al., 2008). Sometimes, perceptual models are seen as one step
in a modeling chain where they form the basis of more formal system conceptualizations, for example, in hydrology
(Beven, 2001) and hydrogeology (Brassington & Younger, 2010). Here we use the term perceptual model as the (typi-
cally visual) representation of the hydrologist's understanding of the system, including her subjective understanding,
speculation and opinion, but without any specific consideration of subsequent simulation model building efforts
(e.g., whether the subsequent simulation model is spatially lumped or distributed). We do not, of course, claim that any
modeler would build and apply large-scale hydrologic model without perceptual models as a baseline, or that an experi-
mentalist does not have a perceptual model in mind when placing their instruments (Figure 2): the issue is rather one
of publishing and sharing such models so that differences in the interpretation of available information about the
hydrology of a place becomes visible, can be debated, and can be addressed.

Large-scale hydrologic simulation models depend on appropriate data sets to define their parameters (and poten-
tially model structure). Workflows to integrate simulation models and data have become increasingly sophisticated and
efficient (Turuncoglu et al., 2013; Leonard and Duffy, 2014; Leonard and Duffy, 2016; Blair et al., 2019). Leonard and
Duffy (2013), for example, developed workflows through which 100 s of terabytes of US data sets organized at the
United States Geological Survey Hydrological Unit Code Level 12 scale can be used to parameterize a version of their
watershed model anywhere in the continental United States. Workflows like these facilitate the integration of models

FIGURE 2 We suggest moving the perceptual model from its often implicit side-role, to an explicit central role for both experimentalists

and modelers, that is, for both deciding where and what to measure, as well as how to simplify reality in our simulation models (Perceptual

model picture taken from Loritz et al., 2017; reality picture taken by Fabian Nippgen; model image from Cherkauer et al., 2003; character

icons are by iconify obtained from iconfinder.com under the creative commons license)
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and data, leading to a strong focus on available data. A priori models (i.e., without subsequent calibration) built in this
manner are the basis for much of our global hydrology (Y. Yang et al., 2019).

Relying heavily on the integration of data sets creates problems when and where currently available data sets are
poor descriptors of the underlying hydrologic processes, that is, where they are mere hydrologic dragons. It also ignores
knowledge (or experience) that has been gained but is not easily embedded in data sets, thus potentially ignoring
knowledge which would significantly alter our predictions. Hartmann et al. (2017) compared groundwater recharge
estimates of two large-scale models, PCR-GLOBWB and VarKarst-R across the carbonate rock regions of Europe,
Northern Africa, and the Middle East (Figure 3). The former is a global integrated hydrologic model based on global
data sets, while the latter is a parsimonious model tailored to regions with strongly focused recharge processes. The
authors found that recharge estimates of the simpler model were more consistent with available observations and local
model results. One reason for this result is that the underlying perceptual model for VarKarst-R is based on the
expected dominant system characteristics of carbonate rock regions, derived from experience derived other in highly
studied locations. The perceptual model of PCR-GLOBWB (at the time) assumed that the world consisted only of two
systems: mountains and alluvial plains—the remaining tailoring was done through adjustment of its parameters (Prof
Mark Bierkens, personal communication). The simpler model used in-depth knowledge gained through local studies to
develop different perceptual models for a key hydrologic domain (carbonate rock regions), which were then further
constrained using similarity principles expressed as behavioral rules. How can we formalize the integration of available
knowledge through perceptual models?

While many journal papers, for example, those describing modeling studies, will include a schematic depiction
of a simulation model, few include the underlying perceptual model of the system that the modeler had in mind.
The schematic of the simulation model typically includes assumptions related to the implementation choices of the
modeler, for example, they might select a spatially lumped or a grid-based model. However, this schematic might
be quite far removed from the underlying system perception the modeler started with. Any perceptual model will

FIGURE 3 Two perceptual models of large-scale hydrologic models are shown at the top. On the left are four perceptual models of the

carbonate rock regions across Europe/North Africa/Middle East by Hartmann et al. (2015). The different perceptual models are derived

based on the expected differences between carbonate rock regions, including relative differences in the degree of karstification and the

amount of storage present. The top right figure is the perceptual model underlying the global hydrological model PCR-GLOBWB (©Marc

Bierkens). The bottom graphs shows how the differences in perceptual models propagate into differences in recharge predictions of the

simulation models (Hartmann et al., 2015)
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likely be much more complex than the subsequent simulation model we execute on a computer—how we simplify
the former to reach the latter is one of the most exciting aspects of hydrological modeling (Beven &
Chappell, 2021). We as a community have not, so far, systematically collected and used the knowledge provided in
perceptual models for hydrologic modeling. Open perceptual models would provide a forum to discuss and chal-
lenge our current thinking about the dominant hydrologic processes of different places, about hydrologic connec-
tivity, about boundary conditions, and so on. Even if we cannot agree on system properties and behavior
in absolute terms, they might offer us an opportunity to discuss the relative difference between places
(e.g., evapotranspiration rates should be higher in this place than that one, this catchment should respond faster
than the next, or subsurface storage should be larger in this system than another one)—which might already signif-
icantly improve our understanding of dominant process controls and whose value is likely underrated in hydrologi-
cal investigations (Rogger et al., 2012). Perceptual models also help us to make (unavoidable) subjective choices
transparent by bringing them out into the open.

These perceptual models also directly relate to the wider problem of transferring knowledge that has been
gained in a specific catchment or location to other (even seemingly similar) places. As McDonnell et al. (2007,
p. 2) conclude that: “As a community, and as individuals, we have progressed along a philosophical path that ‘if
we characterize enough hillslopes and watersheds around the world through detailed experimentations, some
new understanding is bound to emerge eventually.’” As the authors acknowledge, such a reductionist approach
has not led to the transferrable knowledge we aim to find in hydrology (Dooge, 1986). How can we complement
this focus on understanding individual places with one of understanding regional scale variability in a structured
manner? Put another way, how can we construct our hydrologic knowledge landscape so that it transcends the
uniqueness of place and we increase our chance of understanding whether hydrologic similarity might exists and
at what scales—preferably utilizing advancements in computational science to capture and share knowledge
landscapes (Gil et al., 2019)? Investigating individual catchments in depth unavoidably confronts us with high
levels of complexity (Tetzlaff et al., 2008) and unique features that distinguish one particular catchment from
another (Beven, 2000). However, at some higher level, we continue to assume that principles of hydrologic simi-
larity apply and are helpful for regionalization, classification and thus organization of hydrologically relevant
spatial units (McDonnell & Woods, 2004; Wagener et al., 2007). Part of the problem is a lack of hydrologically
meaningful descriptors of catchments (or other hydrologic units of relevant size). Climatic and topographic
catchment descriptors have been assessed widely (e.g., Seibert & McGlynn, 2007; Knoben et al., 2018), and they
have been shown to be valuable predictors of some hydrological responses (e.g., Addor et al., 2018; Kuentz
et al., 2017; Troy et al., 2008). Subsurface characteristics on the other hand are much harder to observe and char-
acterize (Addor et al., 2018; Beven & Cloke, 2012; R. Merz et al., 2020), and therefore might have to be more
strongly based on our expectations than just on directly observable properties. Few attempts to integrate
(expected) system conceptualizations and data have been made thus far (Boorman et al., 1995; Enemark
et al., 2019) and opportunities for improvement remain (Wagener et al., 2021). How we better characterize
hydrologic units across scales meaningfully is unclear, though there is a danger that the subsequent stage of uti-
lizing such data is the more appealing due to the advancements in machine learning and the ease with which we
can build models today.

Open and structured discussions of perceptual models might reveal divergent expectations of the dominant hydro-
logic processes in particular places, potentially even before we have taken in situ measurements. Revealing such diver-
gences would help us to identify hydrologic dragons and provide the basis for developing hypotheses to be tested, so
that candidate perceptual models can be rejected. It could also support the development and testing of increasingly
powerful deep learning models, thus connecting the process-based modeling community with the data-based modeling
community (Nearing et al., 2021). A starting point for a global set of perceptual models could be the previously pro-
posed simple perceptual models of comparative hydrology (Falkenmark & Chapman, 1989), which would nonetheless
require much more tailoring to each location using top-down thinking already applied in many modeling studies
(Sivapalan et al., 2003; Young, 2003). How much can we reduce model prediction uncertainty if we do not just constrain
the expected hydrological behavior with available data, but also using our expectations across large scales (Hartmann
et al., 2015; Sarrazin et al., 2018)? These ideas of using qualitative information more rigorously is of course building on
previous suggestion at the catchment scale discussed, for example, by Seibert and McDonnell (2002), Savenije (2010), or
Kelleher et al. (2013). Some studies have shown that simpler measurements, sensibly distributed in space and time,
might provide insight that is more transferable than that produced by much more in-depth measurements that can only
be made in very few places (Jencso & McGlynn, 2012).
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3 | IMPROVED KNOWLEDGE ACCUMULATION IN HYDROLOGY

The philosophy of science underlying most of hydrology is based on the process of scientific evolution proposed by Pop-
per (1959) where hypotheses are falsified through evidence (data) and remain conditionally valid only as long as they
are consistent with all available evidence. The approach by Popper—one of hypothesis testing—is the strategy often uti-
lized (or at least attempted) in hydrology (though some argue that this has not been done very well; Pfister &
Kirchner, 2017; Beven, 2018; Beven & Chappell, 2021). Another idea, less frequently discussed, is that knowledge accu-
mulation itself constitutes scientific advancement in its own right—rather than just being a component in the hypothe-
ses falsification style scientific processes mentioned above. Does science inherently advance if we accumulate
knowledge? Or only if this knowledge leads to the development of new ideas or theories? Bird (2007, 2008) suggests
that: “Science (or some particular scientific field or theory) makes progress precisely when it shows the accumulation of
scientific knowledge; an episode in science is progressive when at the end of the episode there is more knowledge than
at the beginning.” While Bird was not the first to suggest this concept for scientific progress, which can be traced back
to Francis Bacon, he nonetheless reenergized the discussion (Mizrahi, 2013). Here, we do not want to answer the ques-
tion whether knowledge accumulation is equal to scientific progress or not, but rather stress that effective knowledge
accumulation is a fundamental element for scientific progress and for tackling hydrologic dragons.

We argued in Section 2 that perceptual models are one way toward reducing knowledge gaps (dragons) in large-
scale hydrology. So how and where is knowledge—to build up these perceptual models—currently captured in the field
of hydrology? And especially, how well does it accumulate? Given that we regularly ask what questions remain in
hydrology (Sivapalan, 2009; Blöschl et al., 2019), it seems equally relevant to ask what we already know and how confi-
dent we are that all available knowledge has been captured. An exhaustive case study of how the hydrologic community
has accumulated knowledge was the synthesis effort within the PUB initiative (Blöschl et al., 2019; Hrachowitz et al.,
2013). Over 100 authors produced a compendium of what had been learned about the PUB problem—often rerunning
analyses to make them consistent and comparable. While this work is a good example of what can be achieved through
such a community effort, it used more resources than those normally available. Different—more sustainable and
routine—strategies to achieve such a synthesis are needed to address our hydrologic questions (Blöschl et al., 2019).

Knowledge about the hydrology of different places is shared mainly through peer-reviewed journal papers. While
this meant reading a few hundred papers per year in the 1970s, it now requires checking in excess of 3000 papers in
2020 alone (more than 8 per day), even if we only focus on the main hydrology journals (Figure 4). Many, if not most,
of these papers will describe what has been learned by studying the hydrology of a particular place, or a collection of
places, thus providing insight into the hydrologic variability found in our highly heterogeneous world (Beven, 2000).

FIGURE 4 Number of papers listed in Web of Science (March 2021) for the different journals. Papers are accumulated by decade from

the 1960s to the 2010s (even if the journal started sometime during a decade). Asterisk shows that the year 2020 only reflects that year. The

journals and their individual decadal numbers are as follows: Water Resources Research (119, 202, 227, 338, 385, 563, 647), Journal of

Hydrology (�, 103, 166, 231, 359, 735, 1266), Advances in Water Resources (�, 23, 26, 36, 115, 195, 234), Hydrological Science Journal (�, �,

72, 52, 79, 150, 217), Hydrological Processes (�, �, 21, 83, 281, 358, 306), Hydrology and Earth System Sciences (�, �, �, 60, 94, 306, 315).

Hydrological Sciences Journal was searched as “Hydrological Sciences Journal – Journal des Sciences Hydrologiques”
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The existing meta-analyses show the great potential for learning by reviewing and synthesizing the existing literature
(e.g., Evaristo & McDonnell, 2017; Price, 2011). Review papers play an important role as well, regardless of whether
they are published in our main journals or in journals which specialize on reviews. In either case, problems include that
reviews regularly cannot consider a large fraction of the papers in a particular topic (given the sheer number), and thus
more likely propose a new organization of available knowledge with a limited number of papers as examples, that is,
they are more qualitative reviews (which of course does not mean that they are not useful!). In response to this issue,
some journals (e.g., Environmental Research Letters) specifically advocate more quantitative, metadata-driven reviews.
These quantitative, metadata-driven reviews are a useful complement to more qualitative reviews and require an easier
way to identify and organize the existing literature for synthesis. Given the growing complexity of reviewing any partic-
ular area of hydrology, it is maybe surprising that hydrology has not yet adopted more formalized strategies to literature
reviews as is common in other fields—for example, the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses methodology (Moher et al., 2009). Requiring authors to develop and explicitly communicate a strategy for
their reviews would likely also be useful in hydrology. While a full systematic review might be too complex for a stan-
dard paper, the current lack of strategy often leads to poorly grounded studies and therefore unclear contributions.

We might also look at textbooks, field trips, or graduate supervisors for this knowledge. In contrast to journal
papers, most hydrology textbooks provide the underlying hydrologic theory, but the tailoring to a specific place remains
difficult to encapsulate in general guidelines (Wagener & Montanari, 2011). Field trips are a tangible and impactful way
of sharing knowledge, and new ways for sharing our experience with understanding the hydrology of specific catch-
ments or regions are emerging. For example, Google Earth Engine and other virtual earth educational tools provide
exciting opportunities for “virtual field visits” in combination with those field trips that can be done locally. All students
will be offered some level of accumulated knowledge through their supervisors' experience. However, each supervisor
shares their subjective knowledge landscape and can only reach a small number of students, which creates a heteroge-
neous and dissatisfying baseline for our scientific community. It is important to have exceptional researchers who pro-
vide inspiration and creativity, but it would be beneficial to have a better general baseline for our accumulated
knowledge.

We need a better way to find, extract, and accumulate the hydrological knowledge hidden in over 2500 papers publi-
shed per year if we want to have a chance to tackle hydrologic dragons at the global scale. Hradec et al. (2019) call this
the challenge of assessing information “trapped in the text”. “The sheer volume of text means that, unassisted, we can-
not hope to read all available sources, nor even to keep up to date with all advances in a particular field” (Hradec
et al., 2019). For example: How many studies last year analyzed the water balance of catchments located in the subtrop-
ics? Or, have the Nash Sutcliffe Efficiency values of models applied to semi-arid catchments improved over the last
decade? We can currently only answer these questions by manually looking through large numbers of papers in a
tedious manner. In other fields, it has been recently proposed to approach this problem through machine learning,
which has been shown to be able to extract scientific knowledge hidden in scientific papers (Hradec et al., 2019; Kumar
et al., 2018; Tshitoyan et al., 2019). Tshitoyan et al. (2019) demonstrate what the automated mining of scientific litera-
ture can achieve by showing, for example, that structure–property relationships in materials can be derived from infor-
mation gathered in this manner. Hradec et al. (2019) developed a software tool to perform a similar automated
semantic analysis of a large number of documents to support European policy making. The recent need for fast progress
in studying COVID-19 has further pushed the development and use of such methods (Khanday et al., 2020). While such
approaches are not yet widely explored, hydrology, which offers a large number of historical studies on a very diverse
hydrologic systems (at catchment or other scales), is exceptionally well placed to test its potential.

Regardless of the advancements made with text mining algorithms, the hydrological community needs to advance
how knowledge synthesis is supported. The PUB effort (Blöschl et al., 2013), for example, has shown how tremendously
difficult it is to simply identify everybody who has simulated a particular catchment in the past, and to ask how well
their hydrologic model performed. A starting point to organize our articles in a hydrologically relevant manner would
be the inclusion of mandatory metadata for each hydrologic study in each journal article as Essential Hydrological
Descriptors in addition to the standard key words or subject tags. These could include geolocation, time period, spatial
and temporal resolution, and extent, fluxes, and stores studied at the hydrologic study area. Requiring additional infor-
mation that has to be provided by the authors has to be balanced with the effort it takes to provide this information.
However, such metadata tagging is already done in some data journals such as Scientific Data which includes machine-
readable metadata on location, time period etc. for every article. We suggest that this needs to be expanded to all jour-
nal articles published in hydrology (unless they are purely theoretical) so that the identification and synthesis of studies,
for example, for a particular location and time period, is highly simplified. We would also need to add such machine-
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readable metadata tagging retrospectively to the many articles already published, so that we do not lose the information
stored there and to continue to utilize what has been learned.

Simply organizing all published hydrologic studies on a particular topic, for example, flooding or groundwater
recharge rates, by geolocation, would enable us to see where time and space clusters of studies exist and which studies
we can compare for consistency of conclusions. More importantly, it would highlight actual blank spaces on the map of
global hydrology, showing which catchments or regions have never been studied locally. Clearly the regions of Europe
and North America will be densely populated with study locations, but how many places in the developing world have
never been studied in the peer-reviewed scientific literature, or have actually been studied, but their results are publi-
shed in papers that are unfortunately often rather poorly cited (maybe because they are not published in the main
hydrology journals or published in a Red Book of the International Association of Hydrological Science)?

Such metadata should describe characteristics that are unlikely to change—such as the geolocation and time period
covered by a study. They could form the basis for developing suitable further descriptors to analyze such studies during
syntheses. Imagine a Web of Hydrology (rather than a Web of Science) where the papers (identified by the DOI and their
metadata) are connected with hydrologically relevant information that would be calculated from one or more common
global data sets—check out the https://www.isipedia.org idea in this regard. Such descriptors could include, for exam-
ple, climate descriptors to group the existing studies not just by location, but by the similarity of the climate they were
performed in (e.g., all studies performed in cold arid regions). The community debate around what climate
(or topographic or geologic or …) descriptors should form the basis for organizing our hydrology by itself would be a
very interesting and relevant study by itself (e.g., discussions by Winter, 2001; McDonnell & Woods, 2004; Buttle, 2006;
Wagener et al., 2007). Including multiple data sets would enable at least a basic assessment of the uncertainty in how
well we can characterize a place and a time period. This database would also slowly grow through efforts to extract and
submit hydrologically relevant information from journal papers such as groundwater recharge estimates or the perfor-
mance of a hydrologic model applied to a particular catchment. It would take a community-scale effort to make such a
Web of Hydrology happen and widely utilized (e.g., similar to those during PUB; Wood et al., 2005).

A key question is of course how we would motivate and incentivize the community to do so. Adding additional
metadata to future papers would simply be a requirement by the journal. To add these to historical articles might
require a paid activity maybe even done by nonhydrologists like in Mechanical Turk (https://www.mturk.com), which
is a crowdsourcing marketplace where an outsourced virtual workforce can perform tasks. The focus lies on out-
sourcing tasks that humans can still perform better than computers, such as doing research (see example application by
Bonnefon et al., 2016). Another interesting model for motivation might be to gamify this activity as well as the subse-
quent analysis. The idea is to use techniques borrowed from game-development to motivate consistent participation
and long-term engagement. A nice example of gamification is the Moral Machine (moramachine.net). Users are asked
to make decisions about moral dilemmas. For example, a self-driving car is approaching a pedestrian crossing and a
break failure occurs. The car can either stay in the lane and likely kill a child, or it can swerve and likely kill an adult.
What should the self-driving car do? The Moral Machine online experiment collected 40 million decisions from people
in 233 countries and territories (Awad et al., 2018). Results showed, for example, that there are strong preferences for
sparing humans over animals, for sparing more lives over fewer and for sparing young people over older people.

4 | CONCLUSIONS

The outputs of regional- to global-scale inquiries in hydrology unavoidably contain hydrologic dragons, that is, regions
where the uncertainty in expected hydrologic behavior or relevant system properties is very high due to a lack of local
knowledge. Our observations are often too sparse, our data sets are not equally valid everywhere due to the empirical
post-processing models they are based on, and we cannot “see” key processes due a lack of measurement capability. All
of these points are simply statements of the present state of our science, and we are not the first to point them out. The
wider problem is that few studies highlight such knowledge gaps where they exist, how they propagate into model out-
puts, and what their consequences are for our conclusions. We drew a comparison with cartography in the 15th/16th
century where cartographers shifted from filling all parts of the map to being content with leaving large areas blank.
Blank spaces represented significant knowledge gaps that invited exploration. Highlighting knowledge gaps became a
key outcome, rather than something to hide. How many large-scale maps of hydrologic model predictions or hydrologic
data products have been published with blank areas highlighting knowledge gaps, for example, regions where the
model does not reach specific predictive benchmarks—using local data or regionalized information (Seibert et al., 2018;
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Wagener & Montanari, 2011)? Furthermore, while this would be a good start, how do we tackle these hydrologic
dragons?

4.1 | First, open and shared collective perceptual models

Hydrology as a science is strongly dependent on experience. This experience is difficult to share and pass on fully. One
strategy to improve this sharing, we believe, lies in the development of collective and open perceptual models that evo-
lve if new insight becomes available. Such perceptual models would have to be developed with a granularity that is suf-
ficient to derive testable hypotheses (Beven & Chappell, 2021), but not too fine, because this would distract the focus
from dominant processes which should be captured. Simple perceptual models that capture our expectation of how a
system will behave already exist—for example, within the comparative hydrology framework by Falkenmark and Chap-
man (1989). More complex and spatially distributed versions transferred to larger scales or across larger domains are
required to facilitate where our understanding converges or diverges when applied outside of experimental catchments.
Visualizing such changing knowledge landscape is an interesting challenge for computer science (Gil et al., 2019). Even
weak constraints on hydrologic dynamics derived from such perceptual models might help to constrain acceptable
model behavior as has been shown at the catchment scale and beyond (Hartmann et al., 2015; Seibert &
McDonnell, 2002; Wagener & Montanari, 2011). We finally should stress that shared, open and evolving perceptual
models would make exceptionally good tools for hydrology teaching across all levels of students.

4.2 | Second, improved knowledge accumulation

We argue that knowledge accumulation is poor in the field of hydrology and needs to become a much stronger focus.
While the sharing of insights through collectively developed and shared perceptual models would be a first step, much
of our knowledge is captured in journal articles, and not easily found or extracted. Here, semantic data mining algo-
rithms might offer the chance to harvest the existing knowledge in an effective manner. In the future, we need to
improve the efficiency of extracting and synthesizing knowledge from published work. To do so would require a meta-
data tagging of journal papers with Essential Hydrological Descriptors such as geolocation and time period studied. A
separate open database—a Web of Hydrology—could become a community virtual laboratory by linking these essential
metadata to evolving descriptors of climatic, topographic, or other properties.

Some 350 years after John Cabot had set sail to the West from Bristol harbor, Alexander von Humboldt publi-
shed, for the time, an incredibly comprehensive portrait of nature in the first volume of his work Cosmos: A Sketch
of a Physical Description of the Universe in 1845. Humboldt's Cosmos was largely the results of multiple expeditions
in the Americas to explore some of the blank areas shown in the Salviati Planisphere (Figure 1b). His aim was “…
to grasp Nature's essence under the cover of outer appearances” by studying the “perceptible world,” an objective
akin to Dooge's search for hydrologic laws (Dooge, 1986). Humboldt took an incredible 25 years to write his five-
volume Cosmos while corresponding by letter with scientists across the globe on topics including botany, geology,
geography, and volcanology. We have since moved on to communicate via (increasingly open) journal articles, and
via exchanges at conferences and online meetings, but knowledge accumulation remains cumbersome and time-
consuming. We need to urgently rethink how we share, debate, and ultimately accumulate hydrologic knowledge
given the opportunities provided by web-based tools and machine learning—this would help us to tackle some of
our dragons. It might even help us to realize that some systems are not hydrological monsters with unexpected
behavior (a term coined by Kuczera et al., 2010), if we might find out that their behavior is not as unexpected as
we think it is once we gain a better overview.
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