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Abstract Reductions in streamflow due to groundwater pumping (“streamflow depletion”) can negatively
impact water users and aquatic ecosystems but are challenging to estimate due to the time and expertise
required to develop numerical models often used for water management. Here we develop analytical depletion
functions, which are simpler approaches consisting of (i) stream proximity criteria, which determine the stream
segments impacted by a well; (ii) a depletion apportionment equation, which distributes depletion among
impacted stream segments; and (iii) an analytical model to estimate streamflow depletion in each segment.We
evaluate 50 analytical depletion functions via comparison to an archetypal numerical model and find that
analytical depletion functions predict streamflow depletion more accurately than analytical models alone. The
choice of a depletion apportionment equation has the largest impact on analytical depletion function
performance and equations that consider stream network geometry perform best. The best‐performing
analytical depletion function combines stream proximity criteria which expand through time to account for
the increasing size of the capture zone; a web squared depletion apportionment equation, which considers
stream geometry; and the Hunt analytical model, which includes streambed resistance to flow. This analytical
depletion function correctly identifies the stream segment most affected by a well >70% of the time with
mean absolute error < 15% of predicted depletion and performs best for wells in relatively flat settings within
~3 km of streams. Our results indicate that analytical depletion functions may be useful water management
decision support tools in locations where calibrated numerical models are not available.

Plain Language Summary Groundwater pumping can reduce streamflow (“streamflow
depletion”), but it is hard to determine which streams will be affected by a well and how much each
stream will be depleted. In this study, we develop and test simple tools called analytical depletion functions
that can be used to estimate streamflow depletion in real‐world settings where more complex models or
field estimates are not available. We find that analytical depletion functions accurately predict which stream
will be most affected by groundwater pumping for >70% of wells and accurately estimate the amount of
depletion. Thus, we conclude that analytical depletion functions are a useful tool to provide rapid,
screening‐level estimates of streamflow depletion for water managers in areas where more complex
approaches are unavailable. By integrating analytical depletion functions into online decision support tools,
it will be possible for nonexperts to quickly estimate reductions in streamflow caused by groundwater
pumping from existing and/or proposed wells.

1. Introduction

Effective conjunctive management of surface water and groundwater requires information about the
impacts of groundwater pumping on streamflow, which is often poorly known. Groundwater pumping
reduces streamflow (“streamflow depletion”) by capturing groundwater which would have otherwise
discharged into streams or inducing infiltration from the stream into the aquifer (Barlow et al., 2018;
Bredehoeft et al., 1982). This can have negative consequences on surface water users and aquatic ecosystems,
both of which depend on a stable contribution of groundwater to streamflow (Gleeson & Richter, 2017;
Larsen & Woelfle‐Erskine, 2018; Perkin et al., 2017; Rohde et al., 2017, 2018). However, quantifying
streamflow depletion is challenging due to the complexity of modeling groundwater‐surface water interac-
tions (Barlow & Leake, 2012). To guide sustainable water management, it is critical to develop approaches to
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estimate streamflow depletion that can allow local water managers to make informed decisions on ground-
water withdrawals in a variety of settings (White et al., 2016).

Streamflow depletion can be modeled using numerical or analytical models (Table S1 in the supporting
information; Zipper, Dallemagne, et al., 2018). Numerical models (e.g., MODFLOW) are process‐based
representations of the physics governing groundwater flow, and calibrated numerical models are therefore
ideal for local water management applications such as estimating streamflow depletion. However, the time,
expertise, and financial costs associated with their development make them impractical for most areas
around the world. Analytical models offer water managers a simpler approach to estimate streamflow deple-
tion but do not simulate most of the processes and real‐world complexity included in numerical models. Due
to the relative ease of implementing analytical models, they have been suggested as a path toward develop-
ing real‐time, web‐based conjunctive management decision support tools in locations where numerical
models do not exist (Huggins et al., 2018). The only functional example the authors are aware of is the
Michigan Water Withdrawal Assessment Tool (http://www.deq.state.mi.us/wwat), which integrates a
streamflow depletionmodel with a fish ecological model and is a required step to approve proposals that per-
mit new or increased large quantity withdrawal from the surface or groundwater (Hamilton & Seelbach,
2011; Reeves et al., 2009, 2010; Zorn et al., 2012).

Given their practicality, numerous analytical models have been developed to calculate streamflow depletion
for different hydrogeological conditions (reviewed in Huang et al., 2018 and Hunt, 2014). Most analytical
models assume either one or two linear streams with aquifers extending infinitely away from the stream,
though some analytical models have been developed for more complex settings. For instance, Yeh et al.
(2008) provide an analytical model for a well between two intersecting streams, and Singh (2009) for a well
next to a stream with a right‐angle bend. Despite these advances, there are still many real‐world settings in
which even the most complex analytical models cannot predict streamflow depletion, such as domains with
>2 streams or sinuous stream networks (Barlow & Leake, 2012).

In these complex real‐world settings, recent work has suggested integrating analytical models with depletion
apportionment equations, which are geometric methods used to distribute the impacts of pumping among
stream segments within the surrounding stream network (Reeves et al., 2009; Zipper, Dallemagne, et al.,
2018). To use depletion apportionment equations, we suggest that it is first necessary to identify the subset
of streams within the domain, which may be impacted by a well using stream proximity criteria. Here we
introduce the term analytical depletion function to refer to the combination of an analytical model with a
depletion apportionment equation calculated for streams meeting a given set of stream proximity criteria.

For use in water management decision‐making, it is necessary to rigorously evaluate the performance of
analytical depletion functions. However, many aspects of analytical depletion functions remain untested,
particularly their performance under transient conditions. During the development of the Michigan Tool,
Reeves et al. (2009) found that the best match to numerical model results was the Hunt (1999) analytical
model with an inverse distance‐based depletion apportionment equation using adjacent catchments as the
stream proximity criteria. However, this comparison was only conducted for a single time step (after 5 years
of pumping) and a single stream in Michigan. Subsequently, Zipper, Dallemagne, et al. (2018) tested five
depletion apportionment equations across a range of stream network geometries in British Columbia and
found that depletion apportionment equations which consider stream network geometry, best matched
numerical model results across several stream network and aquifer configurations. However, this compari-
son was under steady state conditions and therefore did not investigate different stream proximity criteria,
analytical models, or performance through time.

Here we conduct a systematic evaluation of the performance of analytical depletion functions and each of
the components (analytical model, depletion apportionment equation, and stream proximity criteria) under
transient conditions in order to advance the utility of analytical depletion functions as a potential decision
support tool. Specifically, we investigate the questions:

1. How does the choice of analytical model, depletion apportionment equation, and stream proximity cri-
teria affect the performance of analytical depletion functions?

2. How does the performance of analytical depletion functions change through time under transient conditions?
3. What are the primary landscape attributes associated with errors in analytical depletion functions?
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2. Formulation of Analytical Depletion Functions

We define an analytical depletion function as the combination of three components shown in Figure 1:
stream proximity criteria (section 2.1), a depletion apportionment equation (section 2.2), and an analytical
streamflow depletion model (section 2.3). First, the stream proximity criteria are used to identify all stream
segments that may be affected by a given well (Figure 1, Step 1). Second, the depletion apportionment equa-
tion is used to estimate the fraction of total depletion (fi), which is apportioned to each stream segment, i,
meeting the stream proximity criteria (Figure 1, Step 2). Third, the analytical model is used to estimate
the volumetric streamflow depletion rate ignoring other stream segments (Qai) for each stream segment

Figure 1. Diagram showing components of an analytical depletion function for a sample stream network. For each step, the option boxed in red is the option with
the best overall performance (section 4.2). Colors in component labels correspond to color‐coding in Results plots.
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meeting the stream proximity criteria (Figure 1, Step 3). Finally, for each stream segment the estimated
depletion (Qdi) as a fraction of the pumping rate (Qw) is calculated as the product of the fraction of total
depletion estimated using the depletion apportionment equations and the streamflow depletion rate
estimated using the analytical model (Figure 1, Step 4; equation (1)):

Qdi ¼ f i
Qai
Qw

� �
(1)

Qd,i is known as depletion potential (Barlow et al., 2018; Fienen et al., 2018) and is between 0% (stream‐aqui-
fer flux is unaffected by pumping) and 100% (the change in stream‐aquifer flux is equal to the pumping rate).
Table 1 summarizes symbols and abbreviations used throughout the manuscript. Analytical depletion func-
tions are available as part of the streamDepletr package for R (Zipper, 2019).

2.1. Stream Proximity Criteria

Stream proximity criteria define the stream segments which could potentially be depleted by a given well,
and to our knowledge have never been explicitly defined or tested in previous work. In this study, we devel-
oped and evaluated five stream proximity criteria (Figure 1, Step 1):

The whole domain stream proximity criteria are the most permissive and use all stream segments within the
domain, which is described in section 3.

The local area stream proximity criteria retain any stream segment within a specified distance of the well
(r in Figure 1, Step 1). This is based on the “local area” concept for a well, which is the area in which the
effects of pumping are likely to impact streams (Feinstein et al., 2016; Fienen et al., 2016). We define our

Table 1
Symbols/Abbreviations, Definitions, and Units Used in Manuscript

Symbol Definition Units

a Area of a Thiessen polygon used for depletion apportionment L2

b Aquifer thickness L
br Thickness of streambed clogging layer L
CV Coefficient of variation ‐

d Distance from a well to a point on a stream segment L
f Fraction of total streamflow depletion from a well apportioned to a stream segment, defined in equations (2)–(4) ‐

Kh Aquifer horizontal hydraulic conductivity L/T
Kv Aquifer vertical hydraulic conductivity L/T
Kr Hydraulic conductivity of streambed clogging layer L/T
KGE Kling‐Gupta efficiency, defined in equation (8) ‐

MAE Mean absolute error varies
MSET Total mean squared error varies
MSEC, MSEV, MSEB Proportion of MSET caused by correlation, variability, and bias, defined in equations (11)–(13) ‐

n Number of stream segments meeting stream proximity criteria ‐

P Total number of points into which a stream segment is divided in the web depletion apportionment equation (4) ‐

r Pearson correlation coefficient ‐

Qa Volumetric streamflow depletion rate in a stream segment considered in isolation (ignoring other segments) calculated
using an analytical model, defined in equations (5) and (6)

L3/T

Qd Depletion potential; volumetric streamflow depletion in a stream segment normalized by the pumping rate (Qw),
defined in equation (1)

‐

Qw Pumping rate of a well L3/T
S Storativity ‐

SC, SV, SB Scaling factors for correlation, variability, and bias errors in KGE calculation ‐

T Transmissivity L2/T
w Weighting factor used in inverse distance (3) and web depletion (4) apportionment equations ‐

wr Width of a stream segment L
λ Streambed conductance, defined in equation (7) L2/T

Abbreviations: L, length; T, time.
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local area by calculating double the maximum distance from any land point to the closest stream segment
within our domain (section 3.2), which ensures that >1 stream segments are potentially affected by each well.

The adjacent stream proximity criteria, proposed by Reeves et al. (2009), retain all stream segments in the
catchment containing the well and neighboring catchments. To identify which stream segments are adjacent
to the well, we use the stream segments with nonzero depletion fractions estimated by the Thiessen polygon
depletion apportionment equation (see section 2.2).

The expanding stream proximity criteria, introduced in this study, use the analytical model (section 2.3) to
determine the maximum distance from a well with a depletion potential of at least 1% for the time step of
interest and retains all stream segments within this distance of the well (r in Figure 1, Step 1). Unlike the
whole domain, local area, and adjacent criteria (which are static through time), the expanding criteria retain
more stream segments at later time steps. We also evaluated the sensitivity of these criteria to the 1% thresh-
old (section 3.6).

The adjacent + expanding stream proximity criteria combine the adjacent and expanding criteria by consid-
ering any stream segment that is either in the catchment containing or neighboring the well (adjacent) or
within the maximum distance with a depletion potential >1% at a given time step (expanding). Thus, when
the expanding radius is very small (e.g., shortly after the start of pumping), the results are identical to the
adjacent method, and when the expanding radius is very large the results are identical to the
expanding method.

2.2. Depletion Apportionment Equations

We evaluated the same five depletion apportionment equations as Zipper, Dallemagne, et al. (2018). We
briefly described them here (Figure 1, Step 2):

The Thiessen polygon equation (2) is an area‐based, rather than distance‐based, depletion apportionment
equation. It uses two overlapping sets of Thiessen polygons. The first set of polygons is created using the
points on each stream segment closest to the well, so there is one polygon corresponding to each stream

Figure 2. Study domain. (a) Elevation and stream network in Navarro River Watershed (outlined) and adjacent HUC12
watersheds. The star on the inset map shows the location of the domain within California. (b) Model domain and
boundary conditions for MODFLOW model. Recharge is applied as a boundary condition to all active cells in top model
layer. (c) Steps to calculate depletion potential using numerical model (based on Barlow & Leake, 2012; different from
steps shown in Figure 1 for analytical depletion functions), and (d) simplified representation of key processes in
MODFLOW domain.
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segment. The second set of polygons is created using the point location of the well in addition to the points
on each stream segment closest to the well. For each stream segment, fi is calculated as

f i ¼
ai
aw

(2)

where ai is the area of the polygon for stream segment i from the first set which overlaps with the polygon
from the second set containing the well and aw is the area of the polygon from the second set which contains
the well (Figure 1, Step 2). Because this is an area‐based method, the depletion apportionment results from
this method are the same for all stream proximity criteria.

The inverse distance and inverse distance squared depletion apportionment equation (3) weight depletion
across different segments based on the inverse of the distance between the well and each stream
segment:

f i ¼
1
dwi

∑j¼1;n
1
dwj

(3)

where d is the horizontal distance to the closest point on each stream segment from the well as in Figure 1
Step 2, n is the number of stream segments meeting the stream proximity criteria, andw is a weighting factor
used to define inverse distance (w=1) or inverse distance squared (w=2).

The web and web squared depletion apportionment equation (4) are similar to the inverse distance and
inverse distance squared approaches, but instead of using only the point on each stream segment closest
to the well they divide each stream segment into a series of equally spaced (5 m) points and then weight
depletion based on all of these points (Figure 1, Step 2). By dividing each stream segment into a series of
points, the web and web squared methods apportion depletion based on the length and shape of each stream
segment, which is consistent with analytical model theory developed for streams of finite length (Kollet
et al., 2002). For each stream segment, i, the fraction of total depletion apportioned to that segment, fi, is cal-
culated as

f i ¼
∑p¼1;Pi

1
dwi;p

∑j¼1;n ∑p¼1;Pj

1
dwj;p

� � (4)

where d is the horizontal distance to each stream segment from the well, P is the total number of points into
which a stream segment is subdivided, n is the number of stream segments meeting the stream proximity
criteria, and w is a weighting factor used to define web (w=1) or web squared (w=2). We did not conduct
a systematic sensitivity analysis of the point spacing in the present study, but exploratory analysis indicated
that this spacing does not have a large impact on the results.

Only two studies we are aware of compared the performance of depletion apportionment equations. Reeves
et al. (2009) compared nine different methods with results from the Kalamazoo Valley (Michigan) numerical
groundwater model and found that the inverse distance approach performed the best, which was then
implemented in the Michigan Water Withdrawal Assessment Tool. Zipper, Dallemagne, et al. (2018) com-
pared five depletion apportionment equations among several different drainage densities, topographic con-
ditions, and recharge rates around Nanaimo, British Columbia (Canada), and found that the web squared
method best matched results from a numerical model under steady state conditions.

2.3. Analytical Streamflow Depletion Models

Of the dozens of existing analytical streamflow depletion models (reviewed in detail by Huang et al., 2018),
we selected two for comparison. The first, referred to as the Glover model, is described in Glover and Balmer
(1954). The second, referred to as the Hunt model, is described in Hunt (1999). These two models were
selected for comparison due to their widespread application (for example, the Hunt model is used by the
Michigan Water Withdrawal Assessment Tool) and contrasting representation of surface water features as
described below. Like most analytical models, both the Glover and Hunt models assume a single linear
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stream oriented perpendicular to the dominant flow field in a homogeneous, isotropic aquifer of infinite hor-
izontal extent with no vertical groundwater flow, among other simplifications.

The Glover method assumes that streams fully penetrate the aquifer and that there is no resistance to flow
through the streambed. Based on these assumptions, the Glover model defines streamflow depletion rate,
Qa, in a stream segment for a given pumping well as

Qa ¼ Qw* erfc

ffiffiffiffiffiffiffiffi
Sd2

4Tt

s0
@

1
A (5)

where S is the aquifer storage coefficient (specific yield in an unconfined aquifer), T is the aquifer transmis-
sivity, t is the time since the start of pumping, and d and Qw are as defined above.

In contrast, the Hunt method assumes that streams partially penetrate the aquifer and that there is a
streambed clogging layer of a finite thickness (br) and hydraulic conductivity (Kr) impeding exchange
between the aquifer and the stream. Based on these assumptions, the Hunt method defines depletion poten-
tial for a given pumping well as

Qa ¼ Qw* erfc

ffiffiffiffiffiffiffiffi
Sd2

4Tt

s0
@

1
A− exp

λ2t
4ST

þ λd
2T

� �
erfc

ffiffiffiffiffiffiffiffiffi
λ2t
4ST

s
þ

ffiffiffiffiffiffiffiffi
Sd2

4Tt

s0
@

1
A

0
@

1
A (6)

where λ is the streambed conductance. The streambed conductance is defined as

λ ¼ wr*
Kr

br
(7)

where wr is the width of the stream segment. The Hunt model will always estimate less depletion than the
Glover model, though when the streambed conductance term is large (high wr*Kr or small br), the two mod-
els provide similar output. For both the Glover and Hunt models, we also used the principle of superposition
(Jenkins, 1968) to model Qa under intermittent pumping schedules (section 3.3).

3. Evaluating Analytical Depletion Function Performance

To evaluate the performance of the analytical depletion functions, we compared them to model output from
an archetypal numerical model (described in section 3.2) based on the Navarro River (California) developed
for this study. Archetypal numerical models are simplified representations of real‐world environments
intended to isolate specific processes of interest (Table S1; Zipper, Dallemagne, et al., 2018) and have many
advantages over calibrated, site‐specific models for the evaluation of analytical depletion functions. Most
importantly, archetypal numerical models eliminate site‐specific complexity unrelated to our research ques-
tions to develop generalizable understanding of the importance of process‐based representations of stream-
flow depletion via a comparison between the two modeling approaches. Given these advantages, archetypal
models have a long history of use in hydrogeology (Bredehoeft & Kendy, 2008; Kendy & Bredehoeft, 2006;
Lamontagne‐Hallé et al., 2018; Tóth, 1963; Zipper et al., 2017, Zipper, Lamontagne‐Hallé, et al., 2018).

3.1. Test Domain

We tested our analytical depletion functions using an archetypal numerical model based on the Navarro
River Watershed, an 816‐km2 watershed in Mendocino County, California, USA (Figure 2;
HUC1801010804 in the U.S. National Hydrography Dataset). Streamflow in the Navarro River is highly sea-
sonal, with high flows during the winter rainy season (December‐April) and flow sustained primarily by
baseflow during the summer dry season (Figures S1 and S2 in the supporting information). While the
Navarro River formerly contained excellent anadromous fish habitat, increases in stream temperature and
sedimentation in recent years have contributed to a decline in salmonid populations and subsequent classi-
fication by the U.S. Environmental Protection Agency as a “water quality limited water body” (North Coast
Regional Water Quality Control Board, 2005).
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Human land use in the Navarro RiverWatershed includes timberland (~70%), rangeland (~20%), agriculture
(~5%), and sparse rural residential (North Coast Regional Water Quality Control Board, 2005). The footprint
of irrigated agriculture has expanded over the past 50 years, with vineyards as the largest water users
(McGourty et al., 2013). Additionally, the Navarro River Watershed is part of the “Emerald Triangle” region
of California (Humboldt, Mendocino, and Trinity Counties), which is home to widespread cultivation of
cannabis, and surface water and groundwater use associated with cannabis cultivation is an emerging man-
agement concern (Carah et al., 2015).

3.2. Numerical Model

The basis of our archetypal numerical model was the Navarro RiverWatershed (Figure 2), including all adja-
cent HUC12 watersheds to avoid potential impacts of boundary conditions on themodel results. We used the
FloPy package for Python (Bakker et al., 2016, 2018) to build a simplified model of the domain using the
MODFLOW‐NWT finite difference groundwater flow program (Figure 2b; Niswonger et al., 2011). We sim-
plified domain complexity based on our archetypal modeling approach (Table S1). Our conceptual model for
the archetypal model is a homogeneous subsurface with losing streams at high elevations (headwaters) and
gaining streams at low elevations (valley bottoms), where homogeneous recharge and both vertical and lat-
eral flow are driven primarily by hydraulic head. As such, our numerical model does not represent potential
site‐specific features such as subsurface heterogeneity, spatial variability in recharge, or existing
groundwater/surface water withdrawals. These simplifications are appropriate for our research questions
as the focus of the present study was the comparison of the numerical and analytical approaches for a gen-
eralized assessment of sensitivity analysis of analytical depletion functions under transient conditions,
rather than a site‐specific assessment of the Navarro River Watershed. Ongoing work in other regions is
investigating the impacts of subsurface heterogeneity, recharge variability, and other site‐specific factors
on the performance of analytical depletion functions via a comparison with calibrated models.

The domain was discretized at 100‐m × 100‐m lateral resolution with five vertical layers for a total of
1,112,555 active grid cells. Vertically, the top of the model domain was set to the land surface elevation at
the center of each grid cell from the National Elevation Dataset (Figure 2a). Each of the top four model layers
had a thickness of 20 m, and the bottom layer had a variable thickness with a constant bottom elevation of
100 m below sea level. By including multiple layers in our MODFLOWmodel, we are able to test the perfor-
mance of the analytical depletion functions in settings where vertical flow can occur, which violates an
assumption in the analytical models that all flow is horizontal (Glover & Balmer, 1954; Hunt, 1999), and
therefore assess the importance of this and other simplifying assumptions in the analytical models. All
model layers were unconfined and capable of drying and rewetting as necessary. The subsurface was defined
as homogeneous with a horizontal saturated hydraulic conductivity (Kh) of 10

‐5 m/s, vertical hydraulic con-
ductivity (Kv) of 10

‐6 m/s, and specific yield (Sy) of 0.1 to represent coarse‐grained siliclastic sedimentary
rocks typical of the region (Gleeson et al., 2014).

Surface water boundary conditions were defined at all cells including second‐order or higher streams in the
U.S. National Hydrography data set (Figure 2) based on the Horton‐Strahler order. The stream network
within the model domain is divided into 485 segments, of which 175 are part of the Navarro River
Watershed and 310 are in the surrounding adjacent watersheds (Figure 2). We used the MODFLOW river
package (RIV; Harbaugh et al., 2000) to represent surface water features. For comparison, we also built an
archetypal numerical MODFLOWmodel representing stream features with the surface‐water routing pack-
age (SFR2; Niswonger & Prudic, 2005), which routes flow through a network of stream channels and allows
for overland flow input to the streams; these results are presented in the supporting information. We defined
the width of each stream segment using a site‐specific empirical relationship (Figure S3), estimated riverbed
conductance as 10% of the horizontal hydraulic conductivity of the aquifer, and used a constant river depth
of 5m due to a lack of data about this parameter. The ocean along the west edge of the domain was a specified
constant head boundary at an elevation of 0 m. The other lateral model boundaries were all no‐flow bound-
aries except where a RIV or SFR cell reached the edge of the active domain.

Since previous work has shown that spatial variability in recharge rates has a negligible impact on the mag-
nitude and distribution of streamflow depletion (Feinstein et al., 2016) and agriculture represents only 5% of
the land use in the watershed (North Coast Regional Water Quality Control Board, 2005), we elected to sim-
plify recharge dynamics in our archetypal model by ignoring potential return flow from pumping.
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Groundwater recharge for the domain was spatially uniform and prescribed in the RCH package as 150
mm/year, which is equal to the long‐term annual average baseflow (Figure S1). We divided recharge evenly
(30 mm/month) among the 5 months constituting the rainy season (December‐April; Figure S2) and set
recharge to 0 mm/month during the rest of each year. For the SFR2 package, which allows an overland flow
input, we calculated the mean monthly difference between total streamflow and baseflow (Figure S1) and
converted this to a volumetric influx for each segment using the direct drainage area to each segment.
Since we do not have any field measurements of overland flow, we were not able to evaluate the accuracy
of this approach, but during the summer months when baseflow is critical and pumping impacts are most
important, the overland flow influx was negligible (<1 mm/month in July‐September and <10
mm/month in May‐October).

We used a multistage spin‐up to ensure the groundwater and surface water components of our models had
reached a dynamic equilibrium prior to beginning our pumping experiments (Somers et al., 2018; Zipper,
Lamontagne‐Hallé, et al., 2018). First, we ran a steady state simulation with no pumping and recharge rates
defined as the long‐term average annual baseflow (150 mm/year). Using these steady state results as initial
conditions, we then ran the model for a 30‐year transient spin‐up. To ensure the model reached a dynamic
equilibrium, we calculated the annual range in river leakage and found <0.1% change between years by the
end of the spin‐up simulation for both RIV and SFR (Figure S4).

3.3. Pumping Scenarios

To test the impacts of groundwater pumping on streamflow in a systematic manner, we created a grid of 113
synthetic pumping wells within the Navarro River Watershed, which were simulated using the Multi‐Node
Well package (MNW2; Konikow et al., 2009). Well screens started at the water table elevation from the
steady state simulation and extended 50 m downward. The MNW2 package allows for pumping from multi-
ple layers if necessary and therefore wells could either be fully contained in one model layer or span up to
three model layers. These synthetic pumping wells were created by making a grid of pumping wells with
1,000‐m spacing (10 grid cells in x and y dimensions), excluding any pumping wells that were placed in grid
cells containing stream features, and selecting every seventh well for simulations as a compromise between
simulating many wells and minimizing computational time (Figure 2b).

We conducted two transient pumping experiments using these wells to test the performance of the analytical
depletion functions: (1) continuous and (2) intermittent. Both transient experiments were 10 years in length.
For the transient continuous experiment, we began pumping in May (the beginning of the dry season;
Figure S2) and pumped at a constant rate for 116 months until the end of the 10‐year simulation. For the
transient intermittent experiment, we turned pumps on during the typical irrigation season of June‐
October (Bauer et al., 2015). In each experiment, we turned wells on one‐at‐a‐time at a rate of 2.63 × 10‐5

m3/s (600 gallons/day) and compared to a baseline simulation with no pumping at any well. Cannabis cul-
tivation is a concern in the Navarro River Watershed; this pumping rate corresponds to estimated water use
for an outdoor cannabis plantation with 100 plants (Bauer et al., 2015). This is larger than the average num-
ber of plants at a typical outdoor grow site in the region (n=45), but well below the maximum observed 757
plants (Butsic & Brenner, 2016). While cannabis water needs were used to define our pumping rate, our
results and analysis focused on depletion potential (section 2) and are therefore broadly applicable to
groundwater withdrawals for any purpose.

The primary variable of interest for comparison with analytical depletion functions was depletion potential,
or the change in the stream‐aquifer flux following pumping normalized by the pumping rate (Table 1;
Barlow et al., 2018). To calculate depletion potential from our MODFLOW model output, we calculated
the change in net stream‐aquifer flux into each stream segment in the Navarro River Watershed while
pumping each well relative to a simulation with no pumping (Figure 2; Barlow & Leake, 2012).

3.4. Analytical Depletion Function Input Data

Analytical depletion functions require input data related to hydrostratigraphy (T, S), stream characteristics
(w, Kr, br), and well‐stream geometry (d). We used the same inputs for our analytical depletion functions and
archetypal numerical model, so that our comparison isolates the accuracy of the analytical depletion func-
tions, rather than any sort of difference in parameters between approaches.
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For hydrostratigraphic properties, the numerical model uses hydraulic conductivity (K) as input and the
analytical models use T, which is equal to Kh*b (where b is the aquifer thickness). Following Reeves et al.
(2009) and Huggins et al. (2018), we defined b for each well‐stream combination as the difference in eleva-
tion between the steady state water table elevation and the streambed elevation or the length of the well
screen, whichever is greater. Therefore, b can vary for each well‐stream combination in our domain. As in
the archetypal numerical model, we used a homogeneous Kh (=10‐5 m s‐1) and S (=0.1) to avoid site‐
specific complexity.

For stream characteristics, we developed an empirical relationship to predict stream width as a function of
the drainage area by manually measuring river width for 20 segments using Google Earth imagery (R2 =
0.67; Figure S3). Data on Kr and br are rarely available, and these inputs are often estimated based on other
quantities. Since we did not have field measurements of streambed properties for our domain, we followed
Reeves et al. (2009) and estimated Kr as 10% of the aquifer's horizontal hydraulic conductivity (Kr= Kv= 10‐6

m/s), and br as a constant thickness of 1 m to match the numerical model.

We calculated the well‐stream distance, d, for each well‐stream combination as the horizontal Euclidean dis-
tance between the well and the closest point on the stream segment. Since we mapped streams as a single
polyline feature at the center of the stream channel, this will overestimate the well‐stream distance (and
therefore an underestimate of streamflow depletion) since the bank of the stream will always be one stream
half‐width closer to the well than the stream center. In our domain this was not a significant concern
because the stream half‐width was <5% of the well‐stream distance for 99.6% of well‐stream combinations,
but in settings where streams are very wide and/or wells are very close to the stream it may be necessary to
use a well‐stream distance corresponding to the distance to the streambank.

3.5. Analytical Depletion Function Output and Performance Metrics

The output from the analytical depletion functions is the magnitude of streamflow depletion (expressed
as depletion potential) in each stream segment, which we calculated every 10 days for every synthetic
pumping well. An example for a single well at a single time step is shown in Figure 3 (as well as
Figures S5 and S6), and time series output is shown in Figure S7. Since we tested the impacts of 113
wells on 485 stream segments over 10 years, this produced approximately ~20 million estimates of
streamflow depletion for each of the 50 analytical depletion functions (~1 billion total estimates of
streamflow depletion).

To synthesize and evaluate these data, we identified four performance metrics intended to capture different
aspects of analytical depletion function performance, which were calculated at each output time step. We
calculated each of these performance metrics for all analytical depletion functions and compared across dif-
ferent combinations of stream proximity criteria, depletion apportionment equations, and analytical models
to determine the sensitivity to each component and identify which analytical depletion function had the best
overall performance for our domain.

The performance metrics are as follows:

1. Spatial distribution of primary impact, defined as accurate identification of the stream segment most
affected by a well. We quantified this as the percentage of wells for which the stream segment with the
greatest depletion potential predicted by the analytical depletion function matched the stream segment
with the greatest depletion potential predicted by the MODFLOW model.

2. Magnitude of primary impact, defined as the accuracy of the predicted depletion potential in the most
affected stream segment. We quantified this as the mean absolute error (MAE) between the depletion
potential estimated by the analytical depletion function and the MODFLOWmodel in the most affected
segment, normalized by the range in depletion potential among all wells predicted from the MODFLOW
model. We normalized MAE to account for the fact that larger absolute errors are more common but less
problematic at higher predictions of depletion potential (e.g., an error of 0.1 is less problematic for a pre-
dicted depletion potential of 0.8 than it is for a depletion potential of 0.2).

3. Spatial distribution of overall impacts, defined as the accuracy of the predicted depletion potential across
the entire domain.We quantified this as the Kling‐Gupta efficiency (KGE; Gupta et al., 2009) between the
depletion potential estimated by the analytical depletion function and the depletion potential estimated
by the MODFLOW model. The KGE is a hydrological fit metric related to the Nash‐Sutcliffe efficiency,
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which integrates correlation, bias, and variability between the two methods, with 1.0 being a perfect fit
and lower values indicating worse performance:

KGE ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SC r−1ð Þ2 þ SV γ−1ð Þ2 þ SB β−1ð Þ2

q
; (8)

γ ¼ CVa

CVn
; (9)

β ¼ μa
μn

; (10)

where
r = Pearson correlation coefficient;

CV = coefficient of variation of analytical depletion function (a) or numerical model (n);
μ = mean of analytical depletion function (a) or numerical model (n);

SC, SV,
SB

= scaling factors used to provide relative weights associated with correlation, variability, and
bias, respectively. We set these factors all equal to 1 to weight each type of error equally.

4. Magnitude of overall impacts, defined as the accuracy of the predicted capture fraction, which is equal to
the cumulative depletion potential summed across all stream segments from a given well at a given time
step (Barlow et al., 2018). We quantified this as the MAE between the capture fraction estimated by the

Figure 3. Example of the predicted distribution of depletion among stream segments from a well after 10 years of pump-
ing from (a) MODFLOW and (b‐f) each of the depletion apportionment equations, combined with the Hunt analytical
model and adjacent + expanding stream proximity criteria. The time series of depletion associated with this well is shown
in Figure S7 (“Near” well).
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analytical depletion function and the capture fraction estimated by the MODFLOW model, normalized
by the range in capture fraction among all wells from the MODFLOW model.

To evaluate the factors influencing performance, we calculated the proportion of the total mean squared
error (MSE) caused by differences in correlation, bias, and variability between the analytical depletion
functions and the numerical models, since these different types of error have different management
implications (Zipper, Dallemagne, et al., 2018). As in Zipper, Dallemagne, et al. (2018), we decompose
these errors as following Gupta et al. (2009) and Gudmundsson et al. (2012). Specifically, we calculate
the proportion of total MSE (MSET) caused by differences in correlation (MSEC; equation (11), variability
(MSEV; equation (12), and bias (MSEB; equation (13):

MSEC ¼ 2σaσn 1−rð Þ
MSET

; (11)

MSEV ¼ σa−σnð Þ2
MSET

; (12)

MSEB ¼ μa−μnð Þ2
MSET

; (13)

where σ is the population standard deviation.

3.6. Selecting Best‐Performing Analytical Depletion Function and Sensitivity Analysis

To select the best‐performing analytical depletion function, we chose the combination of stream proximity
criteria, depletion apportionment equation, and analytical model that performed well across most of these
criteria while still providing environmentally conservative estimates of streamflow depletion to avoid over-
allocating water resources if used in a decision support context.

Since we found that the web and web squared depletion apportionment equations, in combination with the
adjacent + expanding stream proximity criteria and Hunt analytical model, consistently performed the best
(see section 4.2), we conducted an additional one‐at‐a‐time sensitivity analysis of two parameters: the
percent threshold used to define the limit of the adjacent + expanding stream proximity criteria, and the
exponent used in the web and web squared depletion apportionment equations. For the percent threshold,
we varied over three orders of magnitude: 0.01%, 0.1%, and 1%. Smaller thresholds would correspond to a
larger domain used in the expanding portion of the stream proximity criteria. For the exponent, we varied
the exponent w equation (2) from one to three at intervals of 0.5. The web and web squared depletion
apportionment equations correspond to w=1 and w=2, respectively (Figure 1). Larger exponent values give
more weight to stream segments, which are closer to the well.

We also compared performance metrics for the best‐performing analytical depletion function to various
landscape attributes and metrics describing well‐stream geometry to identify the conditions under which
analytical depletion functions were most accurate.

4. Results and Discussion
4.1. Sensitivity Analysis of Analytical Depletion Functions

There is a wide variety of performance across all analytical depletion functions (Figures S8 and S9). In the
following sections, we explore performance as a function of each stream proximity criteria (section 2.1),
depletion apportionment equation (section 2.2), and analytical model (section 2.3).
4.1.1. Sensitivity to Stream Proximity Criteria
Stream proximity criteria have relatively little impact on predicting either the spatial distribution (Figure 4a)
or the magnitude (Figure 4b) of the primary impact of a pumping well, but a large impact on both the spatial
distribution (Figure 4c) andmagnitude (Figure 4d) of overall impacts. The low sensitivity of primary impacts
to stream proximity criteria occurs because the primary impact will typically occur in a stream segment fairly
close to the pumping well of interest, and therefore, this well will be included regardless of stream proximity
criteria used. In contrast, the primary function of the stream proximity criteria is defining the total number
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of streams included in the depletion apportionment equations; therefore, the stream proximity criteria have
a large influence on the results encompassing the overall domain.

The performance of the stream proximity criteria is strongly affected by the number of stream segments
retained. The stream proximity criteria which include the largest number of stream segments (whole
domain) have the highest KGE, but also the highest normalized MAE of capture fraction; followed sequen-
tially by criteria with decreasing numbers of stream segments (local area, adjacent + expanding, adjacent,
and expanding). As the time increases and the number of stream segments included in the expanding criteria
increases, it begins to perform better than the adjacent stream proximity criteria (Figure 4c). Despite the sen-
sitivity to the number of stream segments, overall performance changes only slightly when varying the per-
cent depletion potential threshold used to define the stream segments included in the expanding stream

Figure 4. Comparison across stream proximity criteria for each performance metric. (a) Spatial distribution of primary
impact, (b) magnitude of primary impact, (c) spatial distribution of overall impacts, and (d) magnitude of overall
impacts. Note that y axis is reversed on (b) and (d) so that upwards indicates better performance. Left column shows
continuous pumping experiment and right column is intermittent pumping experiment. Results shown are for Hunt
analytical model and web squared depletion apportionment equation compared to MODFLOW model using RIV for
stream features.
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proximity criteria (Figure S10). Overall, a 1% threshold for the adjacent + expanding stream proximity
criteria performs the best throughout the entire simulated period.
4.1.2. Sensitivity to Depletion Apportionment Equation
In contrast to the stream proximity criteria, the depletion apportionment equations have a strong impact on
the spatial distribution of the primary impact, and the web and web squared methods correctly identify the
most affected segment substantially better than the other depletion apportionment equations tested
(Figure 5a). The accuracy of web and web squared is >80% in the first several years before asymptoting at
~75% in the continuous pumping experiment and ~90% in the intermittent pumping experiment, meaning
that these depletion apportionment equations accurately identify the most affected stream segment most
of the time.

Similarly, the web and web squared approaches are also the best at estimating the magnitude of impacts in
the most affected segment (Figure 5b). Normalized MAE is ~0.05‐0.15 throughout the continuous pumping
experiment (meaning ~5‐15% of the observed range in depletion potential). There is a seasonal pattern in
performance in the intermittent pumping experiment, with normalized MAE of ~0.05‐0.10 during the
pumping period and normalized MAE of ~0.15‐0.20 when the wells are shut off. This variability in

Figure 5. Comparison across depletion apportionment equations for each performance metric. (a) Spatial distribution of
primary impact for segments with depletion potential > 5%, (b) magnitude of primary impact, and (c) spatial distribution
of overall impacts; (d) magnitude of overall impacts. The “No Apportionment” line shows the performance of the Hunt
analytical model without considering stream proximity criteria or depletion apportionment equations. Left column shows
continuous pumping experiment and right column is intermittent pumping experiment. Results shown are for Hunt
analytical model and adjacent + expanding stream proximity criteria compared to MODFLOW model using RIV for
stream features.
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seasonal performance is driven primarily by changes in the observed range of depletion potentials between
the two seasons, with a larger range when pumps are turned on during the summer.

The spatial distribution of overall impacts, as quantified using the KGE across all stream segments
(Figure 5c), indicates a decay in performance through time for all methods. Early in the simulations, KGE
is relatively high since depletion is primarily concentrated in the segments closest to the well. As time goes
on and impacts become more diffuse, the overall performance decreases to different degrees among the dif-
ferent methods and no analytical depletion function has a high overall KGE. After ~1.5 years, the web and
inverse distance approaches plateau at a KGE of ~0, while the web squared and inverse distance squared
approaches plateau at a KGE of ~ ‐0.5. Unlike the distance‐based approaches, the performance of the
area‐based Thiessen Polygon method continues to degrade through time.

The magnitude of overall impacts shows consistent patterns across all depletion apportionment equations
(Figure 5d). Normalized MAE of predicted capture fraction increases through time, from ~0.10 at the start
of the continuous pumping experiment to ~0.50 for the worst‐performing metrics by the end. The various
depletion apportionment equations diverge after approximately 3 years, and the difference between equa-
tions increases through time. Normalized MAE of capture fraction in the intermittent pumping experiment
has a similar increasing trajectory to the continuous pumping experiment, and a strong seasonal pattern as
observed in the normalized MAE of the most affected segment (Figure 5b).

To demonstrate the difference between analytical depletion functions and the traditional use of analytical
streamflow depletion models, we also plot the performance of the Hunt analytical model without consider-
ing stream proximity criteria or depletion apportionment equations (i.e., assuming all impacts are in the clo-
sest stream segment to the well). These results, shown as a dashed line in Figure 5, demonstrate that using
analytical depletion functions substantially improves predictions of the spatial distribution of primary
impacts (Figure 5a), the magnitude of primary impacts (Figure 5b), and the spatial distribution of the overall
impacts (Figure 5c), with a slight decrease in performance in the magnitude of overall impacts (Figure 5d).
These results indicate that in the real‐world stream network geometries tested here, analytical depletion
functions are preferable to analytical models for predictions of streamflow depletion due to
groundwater pumping.
4.1.3. Sensitivity to Analytical Model
As with the stream proximity criteria, the performance of the analytical models at identifying the most
affected segment is virtually identical (Figure 6a). Unlike the stream proximity criteria, however, the two
analytical models differ in their prediction of the magnitude of depletion in this segment: the Hunt method
has a consistently lower normalizedMAE in themost affected segment. Given that analytical depletion func-
tions tend to overpredict depletion potential in the most affected segment (Figure S7), the lower error with
the Hunt model indicates that consideration of the streambed properties leads to lower predicted depletion
potential, which better matches the MODFLOW output. However, unlike the differences between depletion
apportionment equations and stream proximity criteria, all performance metrics show a converging trend
between the two analytical models toward the end of the continuous pumping experiment (Figure 6). The
converging trend indicates that under transient conditions, the relative importance of streambed conduc-
tance decreases as estimated depletion potential increases and the model approaches a dynamic steady state,
which is insensitive to conductivity.

While our results indicate that the sensitivity of modeled depletion potential to the choice of analytical
model is relatively low, previous work has demonstrated that the streambed conductance exerts a large influ-
ence on the accuracy of analytical model results (Sophocleous et al., 1995; Spalding & Khaleel, 1991). In set-
tings with a lower streambed conductance (e.g., lower streambed hydraulic conductivity or a thicker
streambed clogging layer), the difference between the Hunt and Glover models would be greater.
Unfortunately, streambed conductance is challenging to measure and therefore often estimated based on
aquifer properties or treated as a calibration parameter in both numerical and analytical approaches.
However, in reality streambed conductance is often highly heterogeneous and incorrect estimates can lead
to errors in estimated streamflow depletion (Fleckenstein et al., 2006; Irvine et al., 2012; Lackey et al., 2015).
In this context, analytical depletion functions can be used to identify stream segments which may have high
depletion potential due to groundwater pumping and guide further field data collection to better constrain
parameter estimates for either numerical or analytical approaches.
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4.2. Selecting Best Analytical Depletion Function

Among our 50 analytical depletion functions tested, there was no single combination of stream proximity
criteria, depletion apportionment equation, and analytical model that performed the best for all the
performance metrics. Therefore, we used the degree to which a performance metric was sensitive to that
component of the analytical depletion functions to guide the selection of the best overall analytical
depletion function.

Stream proximity criteria had the largest influence on the spatial distribution and magnitude of overall
impacts (section 4.1.1). However, changing stream proximity criteria had opposite impacts on the spatial
distribution and magnitude of primary impacts, where the proximity criteria that produced the best spatial
distribution of primary impacts (Figure 4c) led to the worst predictions of magnitude of primary impacts
(Figure 4d). Therefore, we selected the adjacent + expanding stream proximity criteria as best overall, which
was in the middle for both performance metrics and therefore balances these two metrics.

The depletion apportionment equations had the largest influence on the spatial distribution of primary
impacts (section 4.1.2), and the web and web squared approaches had a very similar performance, which
was consistently better than the other depletion apportionment equations (Figure 5a). To aid in our

Figure 6. Comparison across analytical models for each performance metric. (a) Spatial distribution of primary impact,
(b) magnitude of primary impact, (c) spatial distribution of overall impacts, and (d) magnitude of overall impacts. Note
that y axis is reversed on (b) and (d) so that upwards indicates better performance. Left column shows continuous
pumping experiment and right column is intermittent pumping experiment. Results shown are for adjacent + expanding
stream proximity criteria and web squared depletion apportionment equation compared to MODFLOWmodel using RIV
for stream features.
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decision, we also compared additional web exponents (w in equation (4)) ranging from one to three. As the
exponent increased, the normalized MAE and bias of depletion potential predictions for the most affected
segment also increased, while the KGE across all segments decreased (Figure 7). From a management
perspective, analytical depletion functions are most useful if they provide conservative estimates of
depletion (overestimates) to avoid potentially over‐allocating water resources (Zipper, Dallemagne, et al.,
2018). We find that all web exponents overestimate depletion shortly after the start of pumping in the
continuous pumping experiment, and all except web provide initially conservative estimates for the
intermittent pumping experiment (Figure 7b). While the web depletion apportionment equation
performed better averaged over the entire time series on several performance metrics (Table S2), the web
squared depletion apportionment equation produces the least biased estimates among the exponents
providing conservative results.

Finally, the analytical model had the largest influence on the magnitude of primary impacts (section 4.1.3),
and the Hunt analytical model consistently provided better predictions than the Glover model throughout
the entirety of our simulations.

Therefore, we conclude that the best‐performing analytical depletion function is the combination of the
adjacent + expanding stream proximity criteria using a 1% threshold (Figures 4 and S10), the web squared
depletion apportionment equation (Figures 5 and 7), and the Hunt analytical model (Figure 6). Compared
to all other combinations, this analytical depletion function provides a conservative estimate of depletion
while performing among the best for each of our four performance metrics.

Figure 7. Comparison among different exponents for web depletion apportionment equation. (a) Magnitude of primary
impact; (b) bias of primary impact, where a positive bias means that the analytical depletion function overestimates
depletion relative to the MODFLOW model; (c) magnitude of overall impacts. Note that y axis in (a) is reversed so that
upwards indicates better performance. Left column shows continuous pumping experiment and right column is
intermittent pumping experiment. Results shown are for adjacent + expanding stream proximity criteria and Hunt model
compared to MODFLOW model using RIV for stream features.
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4.3. Performance of Best Analytical Depletion Function

The selected analytical depletion function (adjacent + expanding stream proximity criteria, web squared
depletion apportionment equation, and Hunt analytical model) does particularly well at estimating the pri-
mary impacts of pumping, which tend to be of most concern to managers. The best‐performing approach
correctly identifies the most affected stream segment > 70% of the time there are substantial impacts (Qd
> 0.05) in the continuous pumping experiment and > 85% of the time in the intermittent pumping experi-
ment (Figures 4a, 5a, and 6a). Additionally, the magnitude of primary impact is well predicted, with a nor-
malized MAE in most affected segment <0.15 in the continuous pumping experiment and <0.20 in the
intermittent pumping experiment (Figures 4b, 5b, and 6b). Error in the magnitude of primary impacts is
characterized by a positive bias (Figure 7b), which is most pronounced at high levels of depletion
(Figure 8a). This positive bias indicates that the selected analytical depletion function provides a conserva-
tive estimate of depletion in strongly affected stream segments, which is important to avoid over‐allocating
water resources.

Performance metrics describing predictions of the distribution and magnitude of domain‐wide depletion are
less encouraging than those describing the primary impacts. For the spatial distribution of overall impacts
the selected analytical depletion function performs the worst relative to other options, with KGE across
all stream segments >0 only during the first year of the transient pumping experiments (Figures 4c, 5c,
and 6c). However, the magnitude of overall impacts is still predicted fairly accurately, with the normalized
MAE of total capture fraction <0.40 throughout the continuous and intermittent pumping experiments
(Figures 4d, 5d, and 6d), with normalized MAE <0.20 for the first 2 years after the start of pumping. Like
the primary impacts, the analytical depletion function provides a conservative estimate of depletion poten-
tial, with errors characterized by overprediction of depletion in heavily affected segments (Figure 8a).

Error decomposition (Gudmundsson et al., 2012; Gupta et al., 2009) indicates that the contributions of dif-
ferent factors to overall error are relatively stable through time (Figures 8b and S11). Imperfect correlation
is the cause of ~65% of the total MSE for the most affected segment, with variability contributing most of
the other ~35% (Figures 8b and S11). Bias was not a dominant source of error, despite the observed overpre-
diction at high levels of depletion potential; this is because the contribution of bias to overall MSE is calcu-
lated using the difference between the mean analytical and mean MODFLOW depletion potential, and the
positive bias at high levels of depletion potential is balanced out by a negative bias at low levels of depletion
potential caused by the conservation of mass (Figure 8a). This is consistent with the steady state results from
Zipper, Dallemagne, et al. (2018), which found that the web squared depletion apportionment equation had
a mix of primarily correlation‐ and variability‐driven error. The management implications of these different

Figure 8. (a) Comparison betweenMODFLOWand analytical predicted depletion function for (top row) themost affected
segment and (bottom row) all segments for the (left column) continuous and (right column) intermittent pumping
experiments. The gray line in each plot shows a 1:1 match. (b) Relative contribution of variability, bias, and correlation to
overall mean squared error (MSE) through time for the most affected segment in the continuous pumped experiment; all
segments and intermittent pumping experiment are shown in Figure S11. In both plots, the best‐performing analytical
depletion function is compared to the MODFLOW model using RIV for stream features.
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types of error are discussed in Zipper, Dallemagne, et al. (2018); having a relatively balanced error profile
between variability and correlation indicates that both the overall mean depletion and the spatial patterns
of depletion will be captured by the analytical depletion function.

To determine whether our results were sensitive to the construction of the MODFLOWmodel, we also com-
pared each analytical depletion function to results from separate MODFLOWmodels constructed using the
SFR2 package for stream features instead of the RIV package (Figure S9). While three of the four perfor-
mance metrics are comparable whether the RIV or SFR2 packages are used, the analytical depletion func-
tions do not match the most affected segment as frequently when compared to the SFR2 models,
asymptoting at ~60‐65% for both the continuous and intermittent pumping experiments.

4.4. Landscape Attributes Influencing Performance

Performance of the analytical depletion functions varies in response to several factors describing landscape
position and well‐stream geometry. Spatially, performance tends to be worst in the northeastern portion of
the domain near the watershed boundary (Figure 9a). This region corresponds with some of the highest ele-
vation portions of the watershed (Figure 2). Across all wells, performance is correlated with several
elevation‐based metrics including the land surface elevation, water table elevation, and water table depth.
Of these, normalized MAE has the strongest linear relationship with steady state water table elevation
(Figure 9b), with decreased performance at higher water table elevations (R2 = 0.29, p < 10‐5).

Additionally, both the lateral and vertical distance between the well and the stream segment influence ana-
lytical depletion function skill. The lateral stream‐well distance has a strong positive correlation with nor-
malized MAE (R2 = 0.72, p < 10‐5), though at well‐stream distances <2.7 km performance is insensitive to
changes in well‐stream distance (Figure 9c). Interestingly, we find the opposite relationship between nor-
malized MAE and lateral well‐stream distance when comparing to the MODFLOW model built using the

Figure 9. Normalized mean absolute error (MAE) during the final year of the continuous pumping experiment for each
well, shown by (a) position within domain, with theMODFLOWdomain colored gray and streams colored blue; (b) steady
state water table elevation; (c) lateral distance between well and stream segment; (d) vertical distance between well
and stream segment, where a negative valuemeans the well is at a lower elevation than the stream; and (e) stream segment
length. For each plot, the variable on the x axis was divided into 20 quantiles used to calculate normalized MAE. The
blue lines in (b) and (c) are linear best fit (R2 = 0.29 and R2 = 0.72, respectively; p < 10‐5 for both), and the blue lines in (d)
and (e) are smoothed loess filters. MODFLOW model with RIV stream features used for evaluation; see Figure S12 for
comparison with MODFLOW SFR model.
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SFR2 package (Figure S12). We attribute the change in the direction of the relationship between normalized
MAE and well‐stream distance to the difference in stream representation between these two MODFLOW
packages. In the numerical model built using the SFR2 package, when a well is very close to a stream seg-
ment and causes a lot of depletion, it leads to amore substantial change in the head in the stream, potentially
including stream drying in severe cases. This dynamic is not captured by the analytical models, which
assume negligible change in stream head and an infinite supply of water, analogous to the RIV package.
Therefore, analytical depletion functions may not be well suited to intermittent streams though if it is known
a priori which stream segments are dry at certain times, they can be excluded from stream proximity criteria.

Similarly, the analytical depletion functions perform best when the elevation difference between the well
and stream is small, with particularly large decreases in performance when the top of the well is at a lower
elevation than the stream segment, potentially indicating a steep topographic gradient between the stream
and the well (Figure 9d). Finally, there is a negative correlation between analytical depletion function per-
formance (normalized MAE) and stream segment length for stream segments <1 km in length, while perfor-
mance is insensitive to stream segment length once segment length exceeds 1 km (Figure 9e). Poor
performance in short streams was also observed under steady state conditions in Zipper, Dallemagne,
et al. (2018).

4.5. Utility, Limitations, and Future Research Needs for Analytical Depletion Functions

Our results indicate that analytical depletion functions are likely to be a useful tool for quantifying stream-
flow depletion resulting from existing and/or proposed wells, thus allowing managers to assess pumping
impacts on streamflow in settings where numerical models are not available (Watson et al., 2014).
Notably, the analytical depletion functions are successfully able to identify which stream segment will be
most affected by a pumping well most of the time and provide accurate predictions of the magnitude of its
impact (section 4.3). Comparing across the various factors influencing performance (section 4.4), we find
that the analytical depletion functions are most likely to be accurate for wells placed in relatively flat areas
with a near‐surface water table and within a few kilometers of a downgradient perennial stream.
Conveniently, these factors also describe locations which are often well‐suited to agriculture, such as alluvial
valleys, indicating that the analytical depletion functions are likely to be most effective in the locations
where they are most needed. For instance, in the Navarro River Watershed much of the agriculture is
concentrated in the lowlands of the Anderson Valley around Boonville which is where analytical depletion
functions perform the best (Figure 9a).

From a management perspective, the primary utility of analytical depletion functions is likely to be as a
screening tool for impacts of pumping wells, rather than a replacement for calibrated numerical models.
By providing rapid estimates of streamflow depletion, which can be used to identify areas of potential con-
cern, adding analytical depletion functions to the toolbox of water managers and scientists will allow more
efficient prioritization of time‐intensive efforts such as field data collection or the development of calibrated
numerical models. One example for how these tools may be implemented in a decision support context is
provided by Huggins et al. (2018), who show that depletion apportionment equations combined with analy-
tical models can provide rapid network‐wide assessment of streamflow depletion when integrated with exist-
ing online tools.

While we tested a variety of analytical depletion functions, our analysis was not exhaustive and in some set-
tings it may be necessary to go beyond the combinations of stream proximity criteria, depletion apportion-
ment equations, and analytical models considered here. For instance, in domains where semiconfined
(“leaky”) aquifers represent a significant source of water to wells, analytical depletion function performance
would likely be improved by using an analytical model specifically designed for these settings (Butler et al.,
2007; Hunt, 2003; Zlotnik, 2004; Zlotnik & Tartakovsky, 2008), rather than the Hunt and Glover models used
here. A recent review provides a useful flow‐chart for analytical model selection (Huang et al., 2018).
However, additional work is needed to test the integration of these analytical models with stream proximity
criteria and depletion apportionment equations.

Alternately, in some settings more complex analytical models may eliminate the need for stream proximity
criteria and depletion apportionment equations. For instance, in wedge‐shaped aquifers bounded by
approximately linear surface water features, which are commonly found at the confluence of two streams,
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Yeh et al. (2008) provide a fully analytical solution, which does not require the use of depletion apportion-
ment equations. While the Yeh et al. (2008) solution approach considers only two stream segments and
therefore does not account for potential factors such as underflow, it has the potential to provide additional
theory‐based evaluations of the performance of analytical depletion functions in controlled modeling experi-
ments. Furthermore, all of our experiments turned wells on one‐at‐a‐time, and future work is needed to
examine the cumulative impacts of multiple pumping wells, as the total impact from multiple wells may
not be equal to the sum of the effects of individual wells (Ahlfeld et al., 2016; Schneider et al., 2017).

5. Conclusions

In this study, we evaluated the performance of 50 analytical depletion functions to quantify the sensitivity of
analytical depletion functions to the choice of depletion apportionment equations, stream proximity criteria,
and analytical model under transient conditions, and identify factors describing the landscape and well‐
stream geometry that influence the performance of analytical depletion functions. We found that the analy-
tical depletion functions are most sensitive to the choice of depletion apportionment equations, followed by
stream proximity criteria, and the least sensitive to the choice of analytical model under the conditions stu-
died. The web and web squared depletion apportionment equations, which consider stream geometry, were
best able to predict which stream segment would be most affected by a well and the magnitude of
overall impacts.

The analytical depletion function that performed the best combined the adjacent + expanding stream proxi-
mity criteria with the web squared depletion apportionment equation and the Hunt analytical model. This
analytical depletion function correctly identified the stream segment most affected by a well > 70% and >
85% of the time under continuous and intermittent pumping conditions, respectively, with a MAE <20%
of the range in observed depletion potential. From an application perspective, analytical depletion functions
performed the best in areas with little topographic relief, when wells were within ~3 km of downgradient
perennial streams, and when stream segments are at least ~1 km in length.

Overall, these results indicate that analytical depletion functions are likely to be a useful management deci-
sion support tool in locations where calibrated numerical models are unavailable, though additional
research is needed to test their accuracy in a variety of hydrogeological settings. Analytical depletion func-
tions can be used to test whether proposed pumping wells might negatively impact streams and used to
prioritize more complex field investigations and modeling studies in higher risk locations. We show that
analytical depletion functions providemore accurate predictions of the distribution andmagnitude of pump-
ing impacts than analytical models alone, since the stream proximity criteria and depletion apportionment
equations can distribute pumping impacts within a stream network. Given their low computational require-
ments, analytical depletion functions are particularly well suited for integration with web‐based tools for
real‐time screening and decision support (Huggins et al., 2018), where the analytical depletion functions
can be integrated with diverse geospatial data sets to provide rapid, accurate, and site‐specific estimates of
streamflow depletion.
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