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Modelling the role of groundwater hydro-refugia
in East African hominin evolution and dispersal
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Water is a fundamental resource, yet its spatiotemporal availability in East Africa is

poorly understood. This is the area where most hominin first occurrences are located,

and consequently the potential role of water in hominin evolution and dispersal remains

unresolved. Here, we show that hundreds of springs currently distributed across East Africa

could function as persistent groundwater hydro-refugia through orbital-scale climate cycles.

Groundwater buffers climate variability according to spatially variable groundwater response

times determined by geology and topography. Using an agent-based model, grounded on the

present day landscape, we show that groundwater availability would have been critical to

supporting isolated networks of hydro-refugia during dry periods when potable surface water

was scarce. This may have facilitated unexpected variations in isolation and dispersal

of hominin populations in the past. Our results therefore provide a new environmental

framework in which to understand how patterns of taxonomic diversity in hominins may have

developed.
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E
stablishing the link between environmental change and
resource availability in the East African Rift System (EARS)
is a matter of intense debate, the resolution of which is

fundamental to understanding hominin evolution as well as
patterns of dispersal1. Most authorities currently suggest that
climate change was a key factor for hominin evolution2–4 based
on the coincidence of climate shifts with major evolutionary
events such as the appearance and extinctions of hominin
species5–7. Some focus on the idea that evolutionary adaptation
was caused by multiple climate cycles and enhanced pulses of
climate variability4,6. The apparent coincidence of enhanced lake
levels with evolutionary pulses is also considered significant by
others8,9. In all cases, large-scale climatic events are held to be
responsible for modification of local habitats and resource
distributions causing evolutionary consequences10, although the
detailed evolutionary mechanisms remain unclear. The variability
in the hydrological landscape is seen as having an important
role4,11. However, the potential for widespread groundwater
hydro-refugia, such as springs and groundwater-fed perennial
streams, has long been neglected; yet it may challenge prevailing
views regarding the environmental context for hominin evolution
and dispersal. We use this perspective to stimulate fresh thinking
around the climate-forcing hypotheses, by focusing specifically on
how hydrological aspects of the landscape interact with climate
change to control water availability, a key resource for survival.

In the EARS where most hominin first occurrences are
located12, potable water features in the form of surface water
which are persistent on greater than seasonal timescales, are
scarce. For example, lakes are often alkaline, saline and thought
to have been increasingly ephemeral during the dry parts of
precessionally forced climate cycles in the Plio-Pleistocene, within
critical periods for hominin survival5,13,14. Present day conditions
in much of the EARS are analogous to relatively dry periods
[B70% is arid to semi-arid with groundwater recharge of
o50 mm y� 1 (ref. 15)] and therefore provide a way of exploring
the likely hydrological conditions experienced by early hominins.

Here, we show how hydrogeological modelling of the present
landscape coupled with agent-based modelling of hominin
movement yields new insight into potential correlates of hominin
survival and dispersal. Because groundwater acts to buffer climate
variability it could have provided, via springs and baseflow to
perennial streams, hydro-refugia which persisted through long
dry periods. In past transitions to wetter periods, trans-rift
dispersal routes may have become active before those along the
rift axis, and under the wettest scenarios modelled hominin
dispersal (and therefore gene flow) may have been widely possible
across the region. The hydro-refugia model shows that early
hominins, and later Homo, survival and dispersal is likely to have
been facilitated under drier conditions than previously thought
possible.

Results
Present day fresh water distribution in East Africa. Our
hydrological mapping and modelling focused on groundwater
manifested as springs but also assumed that major regional rivers,
for which there is geological evidence of persistence through dry
periods16, were groundwater fed. Here, we therefore define both
these types of hydrological features as potential groundwater
hydro-refugia. We quantified the distribution and persistence of
springs by first mapping existing ‘permanent’ springs through the
eastern branch of the EARS, then modelling the temporal
persistence of each spring above a flow threshold required for a
spring to act as a significant water source, within an otherwise
dry landscape (that is, 1,000 m3 y� 1—enough running water to
provide drinking requirements for hundreds of animals and to

sustain a small wetland—see Methods). In the present day,
despite a likely mapping bias towards underestimation especially
in the more humid and upland areas, over 450 such springs occur
in the region (Fig. 1). Of these over 85% are fresh, and provide the
only naturally available potable water year-round within semi-
arid and arid areas. In contrast, the majority of modern lakes and
streams in the eastern branch of the EARS are either alkaline/
saline or ephemeral, with the exception of catchments that drain
the extensive Ethiopian Highlands, an area of above average
rainfall compared to the wider region. Of the lakes that are fresh
(8 out of 34), all are small, with the exception of Lake Turkana
(Kenya) (Fig. 1). While brackish and relatively alkaline in the
present day, this lake nevertheless supports a fresh water fish
population and is therefore considered here as a ‘fresh’ lake,
despite not being able to sustain modern humans on a sustained
basis. Notably, fresh water springs often occur within the
catchments of, and sometimes directly adjacent to less potable
saline/alkaline lakes, such as Lake Natron (Tanzania, Fig. 1).

Controls on the presence and persistence of springs. Within
the drier parts of the study area where spring mapping is most
reliable, in comparison to what would be expected if springs were
randomly distributed across the landscape, there is a slight bias
for fewer springs to be located in the most arid areas (Fig. 2).
However, there is also a counter-bias such that those springs
modelled as being most persistent are more likely to occur in the
driest areas. This runs counter to the intuition that catchments
receiving more groundwater recharge will have springs which
persist for longer during dry periods and yields the surprising
result that modern climate is not the primary control on spring
persistence in this context. This is explained by spring persistence
being strongly correlated with groundwater response time,
which is a function of subsurface hydraulic properties (storage
and transmissivity) and geometry (length scale and topographic
gradient) (see Methods, Supplementary Table 1). In general
terms, the groundwater response time is a measure of how long
an aquifer takes to respond to a change in boundary conditions,
such as rates of groundwater recharge varying due to climate
change. Therefore, given the same variations in groundwater
recharge through time, spring discharge from an aquifer with a
large groundwater response time will be relatively temporally
stable in comparison to spring flows issuing from an aquifer with
a much shorter groundwater response time. In wetter areas, while
more groundwater recharge may be available to eventually dis-
charge at springs, the resulting higher water table leads to more
intersection between the water table and the topography. This
reduces the distances between points of groundwater discharge,
greatly reduces the value of groundwater response time, and thus
increases the responsiveness of springs to variations in climate.
The persistence of a spring during a dry period is thus a complex
function of the timescale of climate variability, the topography
which determines the catchment of the spring, and the hydraulic
properties of the aquifer, all of which determine the temporal
relationship between the recharge input and the spring discharge.
The models we have used integrate all these factors to determine
the primary controls.

Whereas previous research has focussed on climate variability
being the dominant control on the availability of water, the data
and models presented here show that geology and topography act
to greatly buffer the impact of climate variability. For example,
our results indicate that a majority of springs (B40–60%) would
remain productive for periods of hundreds of years (Fig. 3)
and around 30% (that is, 4100 springs) would still remain as
hydro-refugia in even drier parts of precessional cycles, assuming
transitions from modern recharge conditions to conditions of just
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1 mm y� 1 recharge (that is, arid-hyperarid). For a sudden
hydrological transition to arid conditions, we see an initially
quicker decline in the number of springs still remaining
productive, as would be expected (Fig. 3 and Supplementary
Fig. 1). Sensitivity analysis and Monte Carlo experiments indicate
that while the hydraulic parameter uncertainty for our estimates
of spring persistence for an average spring is ±37%, the
maximum error in the combined modelled percentage of springs
persistent on any timescale is only ±5% (Fig. 4, Supplementary
Figs 2 and 3).

The abundance of persistent groundwater hydro-refugia. There
are only a small number of hydro-refugia which are known from
the geological record to have survived during the driest periods of
precessional climate cycles and are also associated with hominin
fossils and stone tools. Lake Turkana c. 2–1.85 My16 (Kenya,
Fig. 1) is an important example, supported by the paleo-River
Omo, which has a catchment in the Ethiopian Highlands.
Although there is an increasing recognition of paleo-springs in
the geological record, they are still relatively rare. This is likely
due to their low preservation potential; groundwater discharge
only leaves a direct geological record under specific geochemical
conditions that lead to mineral precipitation (such as tufa17).
However, a spring located at paleo- Lake Olduvai c. 1.84 My17

(Tanzania, Fig. 1) is thought to have continued to flow during a
prolonged period of aridity18 at the precessional minimum. Our
results suggest that there would have been orders of magnitude
more groundwater hydro-refugia during arid phases than the
geological record currently indicates. Furthermore, groundwater
hydro-refugia would have been much more abundant than fresh
water potable lakes during periods of prolonged aridity. Since
some recharge still occurs even in arid areas in the present
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Figure 1 | The pattern and mode of hydrologically available water in

present day eastern Africa. The distribution of water is controlled by

geology, topography and climate. Hominin sites are closely associated with

the rift valley axis. Fresh water lakes (dark blue), alkaline/saline lakes (red),

wetlands (pink), background is groundwater recharge from Döll & Fiedler15

coloured yellow (250 mm y� 1) to white (0 mm y� 1). ‘Persistent Springs’

are those modelled as productive (41,000 m3 y� 1) at precessional (23 ky)

minima under gradual climate change. The number of such springs is

considered conservative, since at least some persistent springs are likely to

be present during dry periods in areas currently mapped as having perennial

streams. Streams, lakes and marshes digitized from map series as described

in the Methods; National borders and main rivers 45 km3 y� 1 from

‘Major rivers of the World, classified by mean annual discharge’, GRDC

http://grdc.bafg.de. Projection: WGS 1984.
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Figure 2 | Cumulative frequency distribution of springs as a function of

the average catchment recharge compared with the regional recharge

distribution in areas receiving o60 mm y� 1 recharge. Springs were

considered as ‘active’ if they maintain flow 41,000 m3 y� 1 for gradual

recharge variations sinusoidally fluctuating from zero to the average

catchment recharge with period (P). The ‘regional recharge rate’ curve is

indicative of the cumulative frequency distribution that would be expected if

springs were randomly distributed across the landscape. The deviations

between the actual spring distributions indicate that spring persistence

(as opposed to spring presence) is not controlled primarily by modern

climate, consistent with statistical results which show that spring

persistence is not significantly correlated to any individual catchment

characteristic including groundwater recharge (Supplementary Table 1).
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day15,19–21, the 1 mm y� 1 recharge applied during the driest
periods used in our models leads to a conservatively low number
of predicted active springs during these periods. The fact that at
least some persistent springs are likely to have been present
during past dry periods in areas mapped as having perennial
streams in the present day also suggests our predictions are
conservative (Supplementary Fig. 4). Nevertheless, while the
presence of spring-based refugia has been demonstrated for an
isolated site22,23 our results suggest their presence and
importance over a much wider geographical area.

Modelling the dispersal of hominins. We examine the evolu-
tionary implications of this improved hydrological understanding
using an agent-based model (ABM). The specific advantages
of using an ABM in this type of context are summarized by
Bonabeau24 who identifies three particular benefits compared to
other modelling approaches, namely their ability to: (i) capture
emergent phenomena; (ii) provide a natural description of a
system; and (iii) be relatively flexible. We apply the principal
of uniformitarianism and consequently use the contemporary
landscape as a method of exploring potential constraints on
hominin movement imposed by the availability of water (that is,
springs, streams, lakes or wetlands). Our aim is to understand the
role that changes in the generic hydrological resource network,
through a simulated climate cycle, may have played as one
control on hominin movement. Here, we do not use the ABM to
examine explicit hypothesizes related to past events or scenarios,
rather we examine generic principles that might apply in this and
past landscapes. The connectivity between two water sources in
our study does not depend on fixed properties based on their
location, but arises as an emergent property of the simulated

system’s constituent units (the agents) and their interactions with
the terrain. The landscape is heterogeneous in terms of land
cover, slope and roughness, and this affects the ability of agents to
traverse an area. This is explicitly incorporated by including
variation in transit time in response to terrain properties within
the model. There are many potential routes between two points in
a landscape, and our model allows agents to explore a wide range
of different routes, according to the decisions that would be made
by an individual walking across a landscape. Only those
successful transits between water bodies are considered in our
analysis as evidence of linkage between ‘nodes’ (or water bodies).

We have modelled a range of climate scenarios along the
continuum of a precessional orbital climate cycle. In the
absence of specific data on relative spatial changes in effective
precipitation through a precessional cycle (for example,
regionally, or say between highlands and lowlands), it is assumed
that as the climate becomes more arid, decreases in effective
rainfall and groundwater recharge occur proportionally every-
where leading to progressive shrinking and fragmentation of the
hydrological network. Conversely as rainfall/recharge increases,
we assume that water tables increasingly intersect stream and lake
beds and there is enhanced potential for springs to occur at
higher elevations, all of which leads to an expanded hydrological
network. We recognize four hydrological components in our
hominin mobility model: (1) mapped springs (seasonal, perennial
and geothermal); (2) mapped streams (seasonal or perennial),
major rivers using flow thresholds set at 40 or 45 km3 y� 1

(GRDC data, see Methods); (3) mapped wetlands (seasonal,
perennial); and (4) mapped lakes (fresh, saline and seasonal).
Four hydrological scenarios were run representing a dry to wet
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precessional orbital climate cycles. Modelled frequency of springs that are
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by five orders of magnitude, changes in groundwater response times can

have more impact on spring persistence than changes in recharge.

However, only a small amount of recharge is needed to maintain flow to a

spring; for example, a recharge of just 1 mm y� 1 over an area of 1 km2

could maintain flows of 1,000 m3 y� 1. Therefore, while a small amount of

recharge is a necessary, but not always sufficient, condition for a persistent

spring, the geological and topographical characteristics of the EARS are also

fundamental controls.
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continuum (Table 1). Run-4 corresponds to the driest phases
of a precessional climate cycle (for example, 23 ky), where
predominantly arid conditions existed across eastern Africa, with
only the most persistent springs, deepest lakes and highest order
and/or groundwater-fed sections of the stream network present.

Controls on hominin mobility and gene flow. The modelling
results demonstrate: (1) That some hominin movement may have
been possible between spring networks and along major rivers
(groundwater hydro-refugia) that would have allowed hominin
populations to survive in specific regions, even during the most
extreme arid climate phases (Figs 5a and 6a). The presence
of hydro-refugia during the driest of scenarios is robust taking
into account uncertainty in the model input parameters
(Supplementary Fig. 6). (2) That under the ‘present dry’ condi-
tions modelled hominin mobility occurs transverse to the rift axis
rather than along it (Figs 5b and 6b). In specific cases modelled,
modern springs high on the rift margins play a role in connecting
the rift floor hydrological system with those of the rift flanks.
Note the presence of cross-rift connections in the Ethiopian
Highlands is sensitive to the input parameters used in the model
(Supplementary Fig. 7) but still holds for other areas of the rift
(Fig. 5b and Supplementary Fig. 8). The importance of dispersal
routes transverse to the rift axis is at odds with the common
assumption of along-rift dispersal23,25 but shows agreement
with westward dispersals observed in some hominins26 and
genetic studies of several other species27,28. (3) Under the wetter
scenarios modelled (Figs 5c and 6c and Supplementary Fig. 8), in
which the fluvial network becomes dominant, the potential for
widespread hominin dispersal as well as associated gene flow is
evident. These conclusions are summarized in Fig. 7 and have
been found to be statistically robust through model repetition (see
Methods; Supplementary Table 2 and Supplementary Fig. 15).

In addition to the long timescale changes in climate expected
through a precessional cycle, shorter term variations (for
example, seasonal dry periods or multi-year droughts) would
have altered the availability of fresh water. For the ‘present’
scenarios, the effect of seasonality on the potential connectivity
of hydro-refugia is incorporated in the analysis by comparing
the ‘present wet’ and ‘present dry’ scenarios (Fig. 5b and
Supplementary Fig. 10). Such patterns of variation in the location
of available spring water are in accordance with the modern
experience of East African communities29,30. For the ‘future wet’
scenario, mobility is already so easy that seasonality would make
little difference (Fig. 5c). For the ‘future dry’ scenario, the impact
of seasonality is harder to constrain but in the driest parts of the
precessional cycle envisaged, seasonal expansion of the drainage
network is likely to have been much less than that during
the present day. This is because both runoff and recharge are
strongly controlled by antecedent moisture and water table
conditions21,31. Hence while seasonal mobility may be enhanced
to some extent even during short wet periods, a sustained drier

prevailing climate would result in decreased streamflow and a less
expansive stream network than observed in the present day even
during periods of relative (for example, seasonal) wetness.

Discussion
One of the fundamental problems in explaining human evolution
by invoking climate in East Africa is that precessional climate
forcing occurs on a timescale that appears too short for allopatric
speciation to occur. To counter this, one has to invoke the
variability itself as the key factor4 or look to longer eccentricity
cycles and their modulation of the precessional cycle amplitude5.
Our work suggests three alternative possibilities, however:
(1) a different geographical distribution of landscape elements
at various times in the past may have favoured longer term
periods of isolation; (2) that the population density was such that
while connectivity was possible it was not exploited; or, (3) more
likely in our view, that climate may not play such a primary
role in human evolution, as is commonly asserted. In fact, the
potential for frequent, widespread dispersal as illustrated here,
and the resulting potential episodes of genetic admixtures, might
explain the lack of phylogenetic diversity in the hominin lineage
noted by some32.

In conclusion, the hydro-refugia model therefore points to the
need to evaluate a range of parameters and variables beyond
the current paradigm of climate-driven environmental change
to explain hominin evolution. It provides a basis for palaeoan-
thropology to explore the possible mechanisms by which
taxonomic diversity in hominins arose32, and may help to
explain levels of genetic exchange identified in ancient African
populations33. Our hydrological results have wide global
applicability (drylands cover around 45% of the Earth’s
landmass34) and the importance of groundwater for the
survival of our hominin ancestors when faced with dramatic
climate changes in the past could also inspire and inform
strategies for human resilience to future climate change35,36.

Methods
Data compilation and hydrological mapping. The study covers an area of
2,093,280 km2 stretching from northern Tanzania (� 5.390�S, 33.996�E) to
Ethiopia (13.797�N, 42.799�E) and focused along the eastern African Rift.

Taxonomic occurrences of early (pre Homo sapiens) Hominidae in Ethiopia,
Kenya and Tanzania, representing 178 sites in total, were collated from all available
records in the Paleobiology Database (Fossilworks: http://fossilworks.org),
and their co-ordinates digitized.

Stream locations were digitized from 1:500,000 British Army maps dating from
the 1940s with gaps in-filled from: (1) modern 1:250,000 topographic maps,
Kenyan Government, 1981; (2) East Africa, Series 1501, Joint Operations Graphic
(Air) 1:250,000 US Air Force; or (3) East Africa 1:250,000, Series Y503, British
Overseas Mapping circa 1963 (http://www.lib.utexas.edu/maps/ams/east_africa).
Second-order rivers were digitized for both seasonal and non-seasonal cases.
Modelled flow data was used to define major perennial rivers as published by
GRDC37, based on WaterGap 2.1 global hydrological model output. Lake outlines
were obtained from Digital Chart of the World (http://www.diva-gis.org/gdata)
with salinity for named lakes determined via literature. If salinity information was
not available then the lake was classed as ‘fresh’ by default.

Table 1 | Climatic scenarios modelled using the agent-based model.

Run Id Climate
state

Hydrological components

Run-1 Future wet Modern perennial/seasonal springs, geothermal springs, fresh water and saline lakes, perennial/seasonal rivers, major rivers
(flow 40 km3 y� 1) and perennial/seasonal wetland/marsh.

Run-2 Present wet Modern perennial springs, geothermal springs, fresh water and saline lakes, perennial rivers, major rivers (flow 40 km3 y� 1) and
perennial wetland/marsh.

Run-3 Present dry Modern perennial springs, geothermal springs, fresh water and saline lakes, major rivers (flow 40 km3 y� 1) and perennial
wetland/marsh.

Run-4 Future dry Persistent springs (that is, those modelled as being persistent through precessional cycles), geothermal springs, fresh water lakes
and major rivers (flow45 km3 y� 1) with saline lakes excluded as either desiccated or too hyper-saline to be potable.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15696 ARTICLE

NATURE COMMUNICATIONS | 8:15696 | DOI: 10.1038/ncomms15696 | www.nature.com/naturecommunications 5

http://fossilworks.org
http://www.lib.utexas.edu/maps/ams/east_africa
http://www.diva-gis.org/gdata
http://www.nature.com/naturecommunications


The location of the main East African Rift Valley axes were digitized from
Hayes et al.38 Locations of springs were digitized from a variety of available map
sources to enable 100% coverage for the study area on as consistent a basis as
possible as follows: Ethiopia (East Africa Y401—GSGS 4355, 1:500,000 scale),
Kenya (East Africa JOG 1501 AIR, Y503, 1:250,000 scale; Tanzania (East Africa
Y401—GSGS 4355, 1:500,000 scale and Geological Map 1st Edition Quarter Degree
Sheets, 1:125,000 scale). Mapping at smaller scales inevitably leads to a larger
number of mapped springs. A comparison of map sheets from Tanzania where we
have two scales of maps to compare indicates that the 1:500,000 maps record, on
average, 40% of the number of springs which are present on the 1:125,000 maps.
The 1:125,000 maps have been ‘ground-truthed’ by the authors (unpublished)
across several map sheets in northern Tanzania with the input of local Masai
guides, suggesting they are remarkably accurate in representing the main sources of
water used by local people. However, the scale of mapping across the modelled area
generally decreased in resolution from 1:125,000 in Tanzania, to 1:250,000 in
Kenya, and 1:500,000 in Ethiopia. Thus, we expect that the undersampling due to
the changing map scales leads to a loss of accuracy in the absolute spring count
from close to 100% accuracy in the south of the area to around 40% in the north.

We are also aware of possible bias of maps underestimating the number of springs
in the wettest areas of the study area, where perennial streams are frequent and
springs may thus be overlooked. This is consistent with known springs used for
water supply in the Ethiopian Highlands (for example, Calow et al.29) which were
not represented on the large-scale maps. Given the likely underestimation of the
total number of springs, to ensure the sample of springs we have mapped is
nevertheless representative for making inferences regarding spring persistence, we
have randomly resampled the total set of springs for increasing subsample sizes as a
proportion of the total spring set. For each subsample, we calculated the RMSE for
the cumulative frequency distribution of groundwater response times of the
subsample against the full spring set. The plot of RMSE versus proportion of the
total sample size (Supplementary Fig. 4) demonstrates that the set of springs we
have mapped is representative as the errors reduce to zero for a subsample size of
around 75% of the full set.

ArcGIS was used to delineate for each spring: the distance to the nearest
watershed boundary (B) average slope (a) using the Hydrosheds database39 and a
90 m spatial resolution Digital Elevation Model40. The Hydrosheds database was
also used to derive upstream contributing catchment areas (A). Hydraulic

Persistent springs Geothermal springs

a b c

5,884
Relief

0

High

Low
0 140 280 km

N
Path density

Perennial springs Geothermal springs

Figure 5 | Modelled dispersal of hominins between hydro-refugia through a wet–dry climate cycle. As the climate changes from the driest (a) to wettest

(c) state envisaged during a precessional cycle, the modelled dispersal of hominins between hydro-refugia increases until dispersal is almost ubiquitous.

Agent-based modelling results based on three hydrological scenarios, using a maximum three-day travel distance of 150 km and surface roughness as the

cost layer scaled according to Supplementary Fig. 11. The black lines shown represent the tracks of agents in the model. It is important to note that just

because the model shows a potential pathway between two water sources it does not necessarily mean that it was actually followed. (a) Driest scenario

using persistent springs (Fig. 1), geothermal springs, fresh water lakes, major rivers with a flow 45 km3 y� 1 (Run-4). Note the networks of springs acting

as hydro-refugia, which persist irrespective of the topographic cost layer and scaling used in the model (Supplementary Figs 9–12). (b) Dry scenario using

modern springs (perennialþ geothermal), lakes (freshþ saline), perennial wetlands and major rivers with a flow 40 km3 y� 1 (Run-3). Note the potential

for dispersal transverse to the rift axis (white dashed line) and the absence of along-axis dispersal routes. Springs act to connect rivers on the rift flank with

those of the rift floor. The cross-rift movement in the vicinity of Lake Abaya (Ethiopia), where the rift cuts the Ethiopian Highlands, is sensitive to the

topographic cost layer and scaling used in the model (Supplementary Fig. 9); however, the principle holds in southern Kenya. The next stage in the

increased water availability continuum is shown in Supplementary Fig. 10, which includes perennial streams and reveals a progressive increase in cross-rift

movement and the start of dispersal along the rift (Run-2). (c) Wettest scenario uses modern springs (seasonal, perennialþ geothermal), wetlands

(perennialþ seasonal), lakes (freshþ saline), major rivers with a flow 40 km3 y� 1 (Run-1). Note the potential for widespread dispersal of hominins and

genes. Background relief map is based on a 30� 30 m SRTM model: http://earthexplorer.usgs.gov/. Projection: WGS 1984.
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conductivity (k0) and porosity (ne) values for each spring location were sourced
from Gleeson et al.41, which is based on the highest resolution mapping digitally
available42. While, we recognize that there may be local variations in groundwater
recharge43–45, we used the distribution of potential groundwater recharge from
Döll and Fiedler15 consistent with other regional African groundwater studies42.
The range of input parameter values are plotted in Supplementary Fig. 2.

ArcGIS was used to analyse relationships between spring persistence, climate
conditions and catchment properties.

Development of models of spring persistence. East Africa is a very diverse
but under-researched hydrogeological environment. There are also inherent

uncertainties involved in modelling long timescale climatic changes in this context.
Thus our choice of modelling approach needed to be generic enough to cover the
most important features of groundwater flow systems across a range of contexts in
which EARS springs are found, while being mathematically simple enough to
apply existing analytical solutions to the governing flow equations to enable the
uncertainties to be easily explored. Although there is debate about the distribution
and precise role of transverse faulting in controlling groundwater flow in the
EARS46, an emerging pattern is one of nested flow patterns whereby groundwater
age increases from rift flank to graben46–48. Due to the heterogeneity and
anisotropy of many EARS lithologies which in some locations determines spring
locations, it would be virtually impossible to predict the locations of all springs on
the basis of regional scale geological mapping and analytical flow models alone.
However, by mapping the locations of the present day springs directly, it is then
reasonable to apply a simple flow model and bulk hydraulic parameters to
determine the likely variability of the springs to climate variations.

Each spring was therefore modelled using a one-dimensional (1D) linearized
Boussinnesq equation as follows:

@Z
@t
¼ k0Z0cos a

ne

@2Z
@x2
þ k0sin a

ne

@Z
@x
; ð1Þ

where t is time [T], x is distance along the aquifer base [L], Z is hydraulic head [L],
k0 is aquifer hydraulic conductivity, ne is aquifer specific yield [� ], a is the slope of
the aquifer [� ], Z0 is the average water table height equal to pD, where D is the
maximum saturated thickness of the aquifer [L] and p is a linearization constant
normally assumed to equal 0.3.

This approach assumes that a homogeneous, isotropic, sloping aquifer
extending to a watershed boundary at one end (no flow boundary condition at
x¼Bx¼B/cos(a)) receives groundwater recharge uniformly over its surface and
transmits groundwater discharge to a spring at its lower end (Dirichlet boundary
condition at x¼ 0). In reality, preferential flow through high-permeability fracture
features may dominate hydraulic head distributions at a local scale in some spring
systems. However, it has been shown that even in such cases, similarly idealized
analytical spring flow models to those used here can correctly simulate the
observed spring discharge dynamics of the bulk groundwater flow system49.
Our models neglect heterogeneity and anisotropy and assume isotropic hydraulic
parameters—hence, they could be improved in the future if higher resolution maps
of the required hydrogeological parameters become available for the region.
Two scenarios were modelled for ‘sudden’ and ‘gradual’ climate change end
members as follows.

First, models for sudden climate change were implemented assuming recharge
(R) ceases entirely after a period of climatic steady state. Following Brutsaert50,
spring discharge (q) is given by:

q tð Þ ¼ � 2BxRcos a
X1

n¼1;2;3 ...

z2
n 1� 2 cos znð Þexp Hi

2

� �� �
exp � z2

n þ Hi2

4

� �
tþ

� �
z2

n þ Hi2

4 þ Hi
2

� �
z2

n þ Hi2

4

� � ;

ð2Þ

with zn being the nth root of tan(z)¼ � 2z/Hi and:

Hi ¼ Bxtan a
Z0

; ð3Þ

tþ ¼
k0Z0cos a

neB2
x

� �
t: ð4Þ

Second, models for gradual climate change were implemented using
sinusoidally varying recharge as a top boundary condition as follows:

R ¼ Rav 1� cos otð Þð Þ; ð5Þ

with recharge thus varying between zero (that is, hyperarid conditions) and a
maximum value (that is, 2Rav) for periods (P¼ 2p/o) ranging from 1 y to 23 ky.
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Figure 6 | Network shapes derived from successful journey matrices

output from the PATH model across the modelled climatic cycle based on

ten repeated runs. (a) Future wet scenario (Run-1). (b) Present dry

scenario (Run-3). (c) Dry (23 ka) scenario (Run-4). Note the progressive

increase in the number of sub-networks. The axes are dimensionless and

are expressed in non-geographic units. The networks simply portray the

relationship between nodes linked by common edges (that is, one or more

successful journey). Each sub-graph represents a distinct network that is

unlinked to any other by an edge; the more the sub-graphs, the poorer the

connectivity between the sum of the nodes present. The networks are

derived from matrix of successful/unsuccessful journeys and were created

by exporting the successful journey matrix from the PATH model and

plotting nodes and edges within Matlab.
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The solution for this case was derived by Cuthbert & Ashley22 as:

q tð Þ ¼ Rav

X1
n¼1;2;3 ...

A
C2 þo2

�o sin otð ÞþCcos otð Þð Þ� A
C

� �
; ð6Þ

A ¼ � 2k0Z0cos a
neBx

z2
n 1� 2 cos znð Þexp Hi

2

� �� �
z2

n þ Hi2

4 þ Hi
2

� �
" #

; ð7Þ

C ¼ � k0Z0cos a
neB2

x
z2

n þ
Hi2

4

� 	
: ð8Þ

We implemented these equations in MATLAB setting the necessary numerical
tolerances to yield an error of o1% in the resulting spring persistence metrics we
output. The models assume a 1D geometry with the output, q, being a discharge per
unit width of aquifer [L2T� 1]). We have therefore rescaled the results to
approximate the actual spring flow (Q, [L3T� 1]) for each entire spring watershed
whereby Q¼A*q/B. In reality, the catchment geometry will often include non-
uniform (predominantly convergent) flow fields, which will affect the groundwater
response times as outlined below.

Available recharge values from Döll and Fiedler15 were derived from a global
hydrological model which takes no account of the underlying geology. It was
therefore important to ascertain whether this recharge could be accommodated by
the groundwater flow systems feeding each spring by ensuring that the modelled
water table stays below the ground surface. To do this a steady-state solution to
equation 1 was used for the previously stated boundary conditions as follows51:

Z ¼ RpD cosðaÞ 1� e
�tanðaÞx

pD � tanðiÞ
pD

1� e
�tanðaÞx

pD


 �
Bx þ x

h i� 
k sin2ðaÞ
� �� 1

: ð9Þ

Further, the position of the maximum water table height is given as follows:

xmax ¼
pD ln 1þ tanðaÞL

pD


 �
tanðaÞ ð10Þ

These equations were used to calculate a refined estimate of the recharge values
needed to ensure physically realistic water table conditions. These refined values
were less than or equal to those derived by the global hydrological model.

The gradual and sudden end member climate scenarios were both modelled
using a range of maximum recharge values including the modern day distribution
of calculated actual recharge, as well as with spatially constant values from the
current regional potential recharge average (49 mm y� 1). Recharge minima were
defined as a 1 mm y� 1 rate considered to be a conservative value for arid
conditions 15,19–21, and scenarios with minima of 0 mm y� 1 recharge were also run
as the most extreme possible end member. We assigned hydraulic properties to the
model based on the results from mapping as described above, assuming D¼ 100 m
and that specific yield was equal to drainable porosity, and tested the parameter
uncertainty as described below.

Spring persistence was defined for the gradual end member as the maximum
period of variation for which spring discharge did not fall below a threshold value,

and for the sudden end member as the time taken for spring flow to fall below this
threshold following the step reduction of recharge from steady-state conditions.
The spring discharge threshold was defined, conservatively, as 1,000 m3 y� 1. For
example, this could be envisaged as enough running water to provide drinking
requirements for 100s of animals of B2,000 l d� 1 (B750 m3 y� 1) with the rest of
the discharge sustaining a small wetland of B100 m2 transpiring at an average
annual rate of B2,500 mm y� 1 typical of (semi)arid environments
(¼ 250 m3 y� 1).

Springs likely appeared or disappeared due to local geological or topographic
changes, such as faulting and volcanism, or blockage of groundwater discharge by
sedimentation or accumulation of spring precipitates. However, we are examining
the combined regional distribution of springs through time and space in the EARS,
a region which is still undergoing extensional tectonics that began B30 Ma ago52.
It has therefore, throughout the time period in which hominins evolved, provided a
suitable hydrological setting by creating the necessary relief and landscapes for
developing active groundwater flow systems; topographic highs that trap moisture
to provide groundwater recharge and drive groundwater flow by gravity to
discharge in topographic lows53.

Testing models of spring persistence. It was not possible to calibrate the models
directly across the region due to the sparsity of available spring flow time-series
data in East Africa and the long timescales considered in this paper. However,
using what data were available, a range of model tests were carried out over
timescales from years to millennia as follows. One published multi-decadal spring
flow time series was found within the study area (Mzima Springs, Kenya54) and
digitized along with the next nearest available long record from South Africa
(Uitenhage Spring55) with a comparable fractured-rock hydrogeology. For these
sites, the rainfall time series (published with the spring flow records) were
characterized using a superposition of two sinusoids whose relative amplitudes
were used as input data to the periodic model equations (6–8) to generate spring
flow output. For Mzima, hydraulic parameters were used directly from the GIS
mapping described above, and for Uitenhage, the parameters were set using the
published range of literature values for that site. The results for both springs show
that the model performs well with respect to simulating the observed degree of lag
and attenuation between the rainfall and spring flow (Supplementary Fig. 5) with a
slight tendency for over-responsiveness in the model. The total spring flow for
Mzima is underestimated by nearly 30%, but since it is based on uncalibrated
parameters defined on the basis of regional GIS mapping, this is a very
reasonable result.

The only way of directly testing the model validity over much longer timescales
is through geological evidence, and output from an identical analytical model has
previously been shown to be consistent with the geological record at Olduvai
Gorge, Tanzania within the study area22. However, another approach is to compare
the analytical model used here with a more complex numerical model simulation
operating over longer timescales, as a proxy for actual data. Such a model
developed for North Africa56 was successfully calibrated to present day data and
then hindcasted to simulate a 20 ka period of groundwater discharge recession with

Driera b c

2

2

Cross Rift - No
Along Rift - No

[Isolation]

Cross Rift - Yes
Along Rift - No

[Dispersal + Isolation]

Cross Rift - Yes
Along Rift - Yes

[Dispersal]

1 Connecting spring

Hydro-refugia network

Rift-flank river

Dry spring
Active spring

River

2

3

3

1

2

1

Dry Wet

Figure 7 | Conceptual model showing the role of springs across various climate scenarios. Under the drier scenario (a) hominin survival is focused on

single springs (or spring clusters) and movement between springs (or spring clusters) is limited. As climate improves (b) the availability of water sources

increases particularly as the water table intersects rift flank rivers. Springs high on the rift sides may act to link rift flank rivers with water sources in the rift

facilitating transverse rift movement. As water becomes widely available (c) hominin movement occurs in all directions including along the rift axis.
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no groundwater recharge since the last ‘pluvial’ period. Our analytical cessation
equations (2–4) have therefore been applied using the range of parameters from
the published ‘base case’ model and the outputs compared (Supplementary Fig. 5).
The recession from the published study has an initially steeper recession than the
analytical model, but yields a similar overall recession on the 20 ka timescale
modelled.

Despite the lack of data for calibration, these tests thus demonstrate the
reasonableness of modelling approach applied for the aims of quantifying, to
within an order of magnitude accuracy, the response times of springs in East Africa
over a range of timescales from years to millennia (Supplementary Fig. 5).

Groundwater response times and uniform flow field assumption. In general
terms, the groundwater response time (GRT) is a measure of how long an aquifer
takes to respond to a change in boundary conditions, such as rates of groundwater
recharge varying due to climate change. It is given by the equation GRT¼B2/D
with hydraulic diffusivity for a sloping aquifer, D¼T/(necos(a)) (ref. 50), and
where T is the aquifer transmissivity. Our models indicate a good linear
relationship (R2¼ 0.64, Supplementary Table 1) between GRT and spring flow
recession timescales as expected. However, we note that GRTs for non-uniform
flow fields increase for convergent and decrease for divergent flow geometries57.
Thus our results, which assume uniform flow, are conservative with respect to the
modelled timescales of spring persistence.

Monte Carlo experiments and groundwater model sensitivity. Sensitivity of
modelled spring persistence to parameter uncertainty was tested by varying each
parameter by ±25% in turn and interrogating the model output (Fig. 4). Monte
Carlo experiments (MCEs) were prohibitively computationally expensive to run on
the full models. However, we felt it important to explore the full range of parameter
uncertainty. Thus, we used the result that spring longevity was well correlated with
GRT, and ran the MCE on GRT for each spring for 10,000 combinations of
parameters sampled randomly from the range defined as follows. The range of
parameter uncertainty was assumed to be well constrained for mapped parameters
(catchment length, area and slope) and allowed to vary through a standard
deviation equal to 10% of the mean. Hydraulic properties k0 and ne were free to
vary through one standard deviation as defined by Gleeson et al.41 The saturated
flow thickness was deemed to be more uncertain and free to vary through a normal
distribution with a standard deviation of 25% of the mean (Supplementary Fig. 3).

Agent-based modelling. ABM was implemented using the Pathway Analysis
Through Habitat (PATH) algorithm run in Netlogo58,59. A copy of the original
model code is available from: http://extras.springer.com/2012/978-1-4614-1256-4
and a copy of the modified code is included in Supplementary Information. The
algorithm involves launching agents from defined habitat patches, in this case
water, to simulate the journey made by individuals through a landscape until they
either arrive at another suitable habitat patch or die. There are four model
requirements: (1) a value for total travel distance in a unit of time; (2) a map of
water-patches; (3) a map showing the energetic cost associated with the terrain
travelled; and (4) a map showing the potential for death (lethality) associated with
the terrain travelled. While the original PATH model has a capacity to include a
spatially variable measure of lethality, in the interests of parsimony, we have chosen
to set this to zero. This gives the agents the maximum chance of reaching their
destination and achieving dispersal and thereby tests rigorously the potential for
population isolation. Furthermore, sensitivity tests using a range of possible
lethality do not materially alter the potential for dispersal reported here. Modelling
was to a resolution of 1 km, with relief roughness60 used as the cost layer, scaled to
reflect the variation in walking speed with slope/roughness as defined by
Naismith’s Rule61 (Supplementary Fig. 9a). A maximum travel time of 3 days
without water was used62. Daily walking distances were based on modern human
walking speeds. Derived from on a large sample (N¼ 3,500) Tarawneh63 quotes
pedestrian walking speeds for different age categories of the order of o20 y,
1.29 m s� 1; 21–30 y, 1.49 m s� 1; 31–41 y, 1.47 m s� 1; and 465 y, 1.1 m s� 1.
While modern humans are capable of walking at speeds upwards of 2.5 m s� 1,
especially for short distances, they typically choose to walk at their ‘preferred
walking speed’ which is variously defined as 1.3 and 1.4 m s� 1 (refs 64–67).
We acknowledge that there may be other aspects of terrain, which might impede
movement such as vegetation type and surface albedo or ‘going characteristics’,
but on the basis of the range of data, one can assume that daily walking distance for
a modern human is likely to vary between 40 and 50 km over a 10 h period. Taking
the least conservative value, the model scenarios were run with a 3 days distance of
150 km representing a maximum possible travel distance. Values are likely to have
been less for pre-Homo agents and a hominin troop may have moved at the pace of
the slowest member. All conclusions were tested specifically against travel distances
of 120, 150 and 180 km (Supplementary Table 5, Supplementary Fig. 6). While
lower travel distances of say 80 km or less in 3 days are conceivable, they simply
reduce the connectivity between points (that is, springs) in the driest scenario and
delay the switching on of cross-rift routes as climate ameliorates.

Implementation of travel distance is based on a simple ‘energy quota’. Each
starting agent has an energy value of 150. If the cost is zero (that is, the terrain flat)
then they can travel 150 units (or cells) which is equivalent to 150 km given that

cell size is 1 by 1 km. The terrain is rarely flat and each cell traversed has a cost
related to the topography which consumes the agent’s energy proportionately
thereby reducing the total travel distance before the agent’s death. Supplementary
Fig. 9b shows the variation in network connectivity with different travel distances
and also the intra-variability at any chosen distance (see also Supplementary
Fig. 10c). The inter-run variability is small compared to that between different
travel distances. Other parameters included in the model are ‘maximum turn
angle’. Each agent places its back to the resource-patch from which it is hatched
and moves forward. If the turn angle is low then there is little deviation in agent
motion to the left or right. As the turn angle increases there is greater capacity for
lateral movement and in theory for an agent to return to its source.
Experimentation revealed that an angle of 20� gave the best compromise in terms
of exploration to the right and left versus directed forward motion. The results are
not sensitive to turn angle set unless it exceeds about 60� when a significant
number of agents begin to lose their way and return home.

Other model inputs subject to parameter choices include the cost-map and
cost-scaling. The impact of different cost-maps, variations of slope and roughness
is shown in Supplementary Figs 10–13. The simulation in Supplementary Fig. 10
illustrates the differences between slope and roughness as cost layers. Roughness
provides a more uniformly variable cost layer that is impacted less by the macro-
scale geomorphology of the rift and more by local ground conditions that would be
experienced by an agent moving over the terrain. The conclusions reported here
use surface roughness as the primary cost layer. Slope restricts mobility to a greater
extent, providing a more conservative set of results with respect to agent mobility.
It is important to note that by using roughness our results favour mobility over
isolation. The overall geographical pattern of results reported here, however, do not
change in broad terms (Supplementary Figs 6,7,11) if slope is used, although the
number of successful journeys does decline and the cross-rift linkages in particular
around the Ethiopian Highlands cease under the present day dry scenario
(Supplementary Fig. 7). Similarly by varying the scaling of cost used impacts on
agent mobility (Supplementary Fig. 12); the scaling that most approximates
Naismith’s Rule was used (Supplementary Fig. 9). The contribution of each
hydrological component was also modelled separately and these results are shown
in Supplementary Figs 13 and 14. At each tick or time-step the model hatches for
4,000 agents who then attempt a journey. The model was routinely stopped after
100 ticks or after 400,000 attempted journeys. The results are not sensitive to the
run-time beyond 100 ticks±20, but connectivity can be reduced if the model is
stopped prematurely, although most connections are established by 50 ticks. In
summary, the model parameters include: (1) maximum travel distance in 3 days
without water; (2) cost-scaling of the landscape reducing travel distance as the
terrain become rougher; (3) the maximum turn angle set for an agent which
determines the degree of lateral exploration versus forward motion; and (4) the
model run-time which can impact on the probability of a connection being found
by an agent between two resource points. The conclusions presented here are
robust across a range of parameter values.

Outputs from the PATH model were analysed in three ways: (1) visually maps
of successful agent journey are exported from Netlogo as raster files and uploaded
for visualization and analysis in ArcMap; (2) within ArcMap the PATH output can
be converted into a binary land cover map (crossed or not crossed) for analysis in
Fragstats68 which produces a range of connectivity variables for habitat patches;
and (3) in addition the PATH model provides a matrix of successful journeys
between named habitat (water) patches which can be exported and plotted within
Matlab (Fig. 6). Supplementary Tables 2–6 provides output metrics for the main
model runs and associated sensitivity analysis. Supplementary Fig. 15 reports the
results of a Principle Components Analysis on the all the metrics derived from the
different model runs across the four climate scenarios. The 95% confidence ellipses
clearly show the statistically significant differences between the four climate
scenarios modelled. These differences are reinforced in Supplementary Table 6,
which reports the mean model runs and the 95% error margins.

Data availability. Locations of springs, Matlab model code for estimating spring
persistence, and the NetLogo ABM are available at: https://doi.org/10.6084/
m9.figshare.c.3721141 (ref. 69)- GIS shapefiles for the digitized hydrological
features used in the analysis are available from the authors on request.
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