Crustal permeability: Introduction to the special issue

S. E. INGBRITSEN¹ AND T. GLEESON²

¹U.S. Geological Survey, Menlo Park, CA, USA; ²Civil Engineering Department, McGill University, Montreal, Quebec, Canada

Received 16 June 2014; accepted 23 September 2014

Corresponding author: Steve Ingebritsen, U.S. Geological Survey, Menlo Park, CA 94025, USA.
Email: seingebr@usgs.gov. Tel: 650 329 4422. Fax: 650 329 4463.

Geofluids (2015) 15, 1–10

MOTIVATION AND BACKGROUND

The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

The directly measured permeability (k) of common geologic media varies by approximately 16 orders of magnitude, from values as low as 10^{-23} m² in intact crystalline rock, intact shales, and fault gouge, to values as high as 10^{-7} m² in well-sorted gravels. The permeability of Earth’s upper crust can be regarded as a process-limiting parameter, in that it largely determines the feasibility of advective solute transport (k ~ \geq 10^{-20} m²), advective heat transport (k ~ 10^{-16} m²), and the generation of elevated fluid pressures (k ~ 10^{-17} m²) — processes which in turn are essential to ore deposition, hydrocarbon migration, metamorphism, tectonism, and many other fundamental geologic phenomena.

The hydrodynamics of fluids in the brittle upper crust, where topography and magmatic heat sources dominate patterns of flow and externally derived (meteoric) fluids are common (e.g. Howald et al. 2015) are distinct from the ductile lower crust, dominated by devolatilization reactions and internally derived fluids (e.g. Connolly & Podladchikov, 2015). The brittle-ductile transition between these regimes occurs at 10–15 km depth in typical continental crust. Permeability below the brittle-ductile transition is non-negligible, at least in active orogenic belts (equivalent to mean bulk k of order 10^{-19} to 10^{-18} m²) so that the underlying ductile regime can be an important fluid source to the brittle regime (e.g. Ingebritsen & Manning 2002). The overall objective of this special issue is to synthesize current understanding of static and dynamic permeability through representative publications from multiple disciplines.

The objective of this introduction to the special issue is to define crucial nomenclature and the ‘static’ and ‘dynamic’ permeability perspectives and to briefly summarize the contents of this special issue, which is divided into the following sections: the physics of permeability, static permeability, and dynamic permeability.

NOMENCLATURE: POROSITY, PERMEABILITY, HYDRAULIC CONDUCTIVITY, AND RELATIVE PERMEABILITY

For the benefit of the broad Geofluids community, which includes scientists from a wide range of disciplinary backgrounds, we briefly define some of the key hydrogeologic parameters that are repeatedly used in this special issue, namely porosity, permeability, hydraulic conductivity, and relative permeability. These are conceptually related but distinct concepts.

First, we note that all of these parameters are continuum properties that are only definable on a macroscopic scale.
Perhaps most obviously, at any microscopic point in a domain, porosity \(\frac{V_{\text{void}}}{V_{\text{total}}} = n \) will be either 0 in the solid material or 1 in a pore space. As one averages over progressively larger volumes, the computed value of \(n \) will vary between 0 and 1 and, if the medium is sufficiently homogenous, the volume-averaged value of \(n \) will eventually become nearly constant over a volume range which has been termed the representative elementary volume or (REV) (Bear 1972, 1979). Figure 1 shows, for example, a hypothetical section of volcanic ash-flow tuff; note the distinctly different porosity of the flow center relative to the flow top and bottom. The concept of permeability – the ability of a material to transmit fluid – also applies only at an REV scale and can be regarded as reflecting detailed solid-fluid geometries that we cannot map and thus wish to render as large-scale properties.

Porosity (\(n \)) – permeability (\(k \)) relations have been the subject of many studies (e.g. Luijendijk & Gleeson, 2015), and there is often a positive correlation between these two essential quantities. However, even in the case of classical porous media, a correlation between \(n \) and \(k \) cannot be assumed for mixed size grains, or when comparing media with greatly different grain sizes. For instance, although there is a positive correlation between \(n \) and \(k \) for clays themselves, clays are \(10^{4} \)–\(10^{10} \) times less permeable than well-sorted sands (e.g. Freeze & Cherry 1979), despite having generally higher porosities. Further, positive correlation between \(n \) and \(k \) cannot be assumed in more complex media. Consider again our ash-flow tuff example (Fig. 1): the top and bottom of an ash flow cool relatively rapidly, retaining their original high porosities (approximately 0.50), but the permeability of this ‘unwelded’ material is relatively low, because the pores are small and not well connected. If the ash flow is sufficiently thick, pores deform and collapse in the slowly cooling interior, where the final value of porosity can be quite low (<0.05). However, the flow interior also tends to fracture during cooling, and the interconnected fractures transmit water very effectively despite the low overall porosity. The net result of the cooling history is that flow interiors typically have up to \(10^{4} \) times higher permeability than ‘unwelded’ flow tops and bottoms, despite their much lower porosities (0.05 versus 0.50).

Both laboratory and in situ (boresite) testing normally return values of hydraulic conductivity (\(K \)) rather than permeability (\(k \)), and this parameter reflects both rock and fluid properties:

\[
K = \frac{k \rho g}{\mu_f},
\]

where \(\rho g \) is the specific weight of the fluid and \(\mu_f \) is its dynamic viscosity. In order to compare rock properties among different geothermal conditions, or different fluids (e.g. hydrocarbons versus aqueous fluids), it is necessary to convert measured values of \(K \) to values of \(k \) (e.g. Stober & Bucher, 2015). Considering once again our ash-flow tuff example: if the surficial outcrop depicted in Fig. 1 could somehow be translated from standard temperature and pressure (STP = 15°C, 1 bar) to 300°C and approximately 1000 bars (approximately 10 km depth), without any changes in its physical morphology, its permeability \(k \) would not change, but its hydraulic conductivity would be approximately 10 times larger because of the increase in the \(\rho g / \mu_f \) ratio.

Finally, the empirically based concept of relative permeability is used to extend the linear flow law for viscous fluids (i.e. Darcy’s law) to multiphase systems. Relative permeability (\(k_r \)) represents the reduction in the mobility of one fluid phase due to the interfering presence of another fluid phase in the void space and is treated as a scalar varying from 0 to 1, usually as some function of volumetric saturation (e.g. \(V_{\text{liquid}} / V_{\text{void}} \), where \(V_{\text{vapor}} + V_{\text{liquid}} = V_{\text{void}} \)). This concept is widely invoked in the context of hydrocarbon migration and production (oil–gas–liquid water) and unsaturated flow above the water table (air–liquid water), but is also applied to multiphase flow in hydrothermal systems – for instance by Weis (2015), who allows for the presence of three distinct phases in the void space (vapor + liquid + solid NaCl). Because methane-saturated shales can have very low permeabilities to basin brines, some studies have used relative-permeability effects to explain anomalous pressure in mature sedimentary basins (e.g. Deming et al. 2002).

STATIC VERSUS DYNAMIC PERMEABILITY

Some economic geologists, geophysicists, and metamorphic petrologists have long recognized permeability as a dynamic parameter that changes in response to dewatering, fluid production, and seismicity (e.g. Sibson et al. 1975;
Lived (10 3 et al. (11 papers). The final contribution proposes a data structure to embrace and extend existing knowledge of crustal permeability.

The physics of permeability

Darcy’s law is an expression of conservation of momentum that describes viscous fluid flow through a porous medium. It provides the scientific basis for the concept of permeability. The first two papers in this collection explore limits to the validity of Darcy’s law. For porous media subjected to harmonic pressure forcing, the effective permeability is frequency dependent, an effect that has classically been represented as a dynamic correction to the effective fluid viscosity and has been termed ‘dynamic permeability’ (a term that we define more broadly here). This results from the fact that Darcy’s law (and therefore permeability) was originally developed for cases where inertial forces are negligible. When inertial forces are significant, the ratio of fluid flux to pressure gradient may not be constant. The seminal model of Johnson et al. (1987) (JKD) defined a critical frequency that represents the transition from viscous- to inertia-dominated momentum balance in homogeneous porous media. Lattice-Boltzmann simulations by Huber & Su (2015) exhibit good agreement with JKD except for their most heterogeneous example, which exhibits a resonance behavior (their fig. 7). They consider adding a transient term to the flux equation, which results in a hyperbolic (rather than parabolic) model for mass conservation in porous media (their eq. 21) but fails to explain the entire suite of numerical results. Laboratory experiments by Medina et al. (2015) also explore limits to Darcy’s law; they show that, for fluids containing suspensions of solids, the linear relationship between fluid flux and pressure gradient that applies for Newtonian fluids breaks down, and strongly heterogeneous velocity fields develop within fractures. Small (3%) variations in solid volume fraction can cause twofold velocity variation.

Selvadurai (2015) explores the influence of stress state (axial normal stress) on the permeability of a single fracture through cylinders of Barre Granite and demonstrates >102-fold variation in fracture k in response to axial stress ranging from 0–7+ MPa, with k hysteresis (<101-fold) between loading and unloading cycles. Rutqvist (2015) reviews a variety of field data on stress-induced permeability changes in fractured rock and also discusses the effects of thermally and chemically induced fracture closure; his fig. 14 summarizes fractured rock k to 0.6 km depth at Gidea, Sweden, and his fig. 16 summarizes crystalline bedrock k to 7+ km depth from a variety of sites.

Static permeability

The papers broadly categorized as dealing with static permeability include contributions related to sediments and...
sedimentary rocks (2 papers) and igneous and metamorphic rocks (4 papers). Volcanic, sedimentary, plutonic, and metamorphic rocks represent about 9%, 73%, 7%, and 11% respectively, of the exposed continental crust (Wilkinson et al. 2009). This special issue includes representative publications concerning each of these broad categories. Extensive studies and compilations of permeability in sedimentary rock exist in the petroleum geology literature (e.g. Ehrenberg & Nadeau 2005) and industry archives, but this is not a large emphasis of the special issue. Much of the data in petroleum-industry archives is not publically disclosed, which limits its utility for study, analysis, and modeling. In contrast to the near-surface crust, the bulk of the continental crust is dominated by metamorphic rocks (approximately 90% of crustal volume despite only approximately 10% of surface exposures) rather than sedimentary rock (only a few percent of crustal volume despite approximately 70% of surface exposures) (Wilkinson et al. 2009). Much less is known about the permeability of the predominantly metamorphic deeper crust compared with the near-surface crust, as echoed in this special issue by the lack of well-test data from the deeper crust and differing perspectives on the likelihood of Darcian flow below the brittle-ductile transition (BDT) (Yardley 2009; Stober & Bucher, 2015; Connolly & Podladchikov, 2015).

Sediments and sedimentary rocks
Luijendijk & Gleeson (2015) explore porosity-permeability relations for clastic sediments (sand–clay mixtures) to a depth of 2 km, a depth restriction that largely avoids complications such as pressure solution and hydrothermal alteration. They find that the laboratory-scale k of natural sand–clay mixtures is best predicted as the geometric mean of the permeabilities of the sand and clay components and suggest that their algorithm could be applied to well-log data by using neutron and density logs to estimate clay content and porosity (their fig. 9). Daigle & Screaton (2015) explore a large laboratory-scale sediment-permeability data set (530 samples) from ODP and IODP sites worldwide; the emphasis is on the relationship between permeability (10^{-21} to 10^{-14} m2) and porosity (0.2–0.8) for various subsets of the data. They find that anisotropy is modest (their fig. 8), that field and laboratory k measurements are quite consistent (their fig. 9), and that porosity–permeability trends seem to be maintained through burial and diagenesis to porosity <0.10, suggesting that extrapolation to significant depth is reasonable.

Igneous and metamorphic rocks
Ranjam et al. (2015) explore large in situ data sets ($n = 977$ from Sweden, Germany, and Switzerland) to assess the depth dependence of the permeability of crystalline rocks in the shallow (≤ 2.5 km) crust. The complete data set (their fig. 2) does not support a general k–z relation; however, some specific lithologies and tectonic settings display a statistically significant decrease of permeability with depth. Burns et al. (2015) demonstrate that regional groundwater flow can explain lower-than-expected heat flow in a thick sequence of highly anisotropic ($k_v/k_h \sim 10^4$) continental flood basalts (Columbia River Basalt Group). The limited in situ k data are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 0.6–0.9 km depth (their fig. 4) and approximately 40°C (their fig. 5), possibly a result of low-temperature hydrothermal alteration; these authors note that substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the Cascade Range and at Kilauea Volcano, Hawaii. Geochemical analyses and numerical modeling by Pepin et al. (2015) suggest that the Truth or Consequences, New Mexico, hot-spring system is supported by deep (2–8 km) circulation in permeable (10^{-12} m2) crystalline basement rocks. Circulation of meteoric fluids to these depths may occur through ‘hydrologic windows’ in overlying, lower permeability units. Their figure 1 compares basement permeabilities inferred for Rio Grande Rift hydrothermal systems with published k–z curves. Finally, Stober & Bucher (2015) provide a conceptual/qualitative discussion of fluid flow in crystalline rocks above the BDT; their contribution includes observations of decreasing in situ k with depth in a single, deep borehole (their fig. 1).

Dynamic permeability
The papers broadly categorized as dealing with the dynamic variability of permeability include contributions related to oceanic crust (1 paper), fault zones (4 papers), crustal-scale phenomena (3 papers), and the effects of fluid injection at the reservoir or ore-deposit scale (3 papers).

Oceanic crust
Cann et al. (2015) consider the crystalline crust near the mid-ocean ridge (MOR). They show that alteration of sheeted dikes to episodic ‘stripes’ entails extensive dissolution of primary dike minerals and creates significant transient porosity (0.20) and permeability. Each dike was altered before being cut by a later dike, indicating a maximum timescale of 2000 years for hydrothermal alteration. This ‘reaction permeability’ is rarely invoked in models of high-temperature MOR circulation, but may have complemented fracturing to provide the high k required for vigorous circulation. The stripe-like reaction k facilitated and channeled fluid flow, while ongoing hydrothermal alteration conditioned fluid chemistry (metasomatism). The Cann et al. contribution is unique (in this collection) in considering the implications of outcrop- to thin section-scale mineralogy and paragenetic sequencing.
Fault zones

Saffer (2015) considers active subduction-zone faults, which are important conduits for dewatering and transport of heat and solutes. He shows that fault-zone permeability values are consistent between margins, with time-averaged values of 10^{-15} to 10^{-14} m2 and transient values of 10^{-13} to 10^{-11} m2. Such values are approximately 109 times higher than estimated sediment permeabilities at (for instance) 5 km depth (his fig. 6). Permeable zones occupy a small fraction of the fault surface at any one time and migrate over time. Cox et al. (2015) show that intermediate- to far-field earthquakes (generating seismic energy densities approximately 0.1 J m$^{-2}$) cause characteristic 5-day delayed, approximately 1°C cooling of thermal springs in the Southern Alps, New Zealand. They attribute this behavior to permanent strains of 0.1–1 microstrain that open or cause fractures and allow greater mixing between thermal waters and cool groundwater. Micklethwaite et al. (2015) focus on underlapping fault stepovers, a type of stepover that is relatively rare but anomalously associated with gold deposits. They model the associated Coulomb failure stress changes and explains the association with gold in terms of localized fault damage. Supergiant gold deposits imply transiently high permeabilities on the order of 10^{-12} m2, with healing on a timescale of 10^3 to 10^4 years (his fig. 9); a 5 Moz goldfield could perhaps form in 10–1000 years. Howald et al. (2015) use the age and isotopic composition of sinter in the (former) Bowers geyser field to infer two long-lived (5 × 103 year) hydrothermal-discharge events following M < 5 earthquakes on the Malpais fault zone. Simulation of temperature and isotopic composition (their fig. 8) suggest that the earthquakes caused a >103 increase in k (from <10$^{-14}$ to >10$^{-11}$ m2).

Crustal-scale behavior

Porosity waves are a mechanism by which fluids can be expelled from ductile rocks below the BDT. Connolly & Podladchikov (2015) present a general, analytical steady-state solution to the hydraulic equation that governs such flow and predicts the dynamic variations in fluid pressure and permeability necessary to accommodate fluid production. Their fig. 8 is a conceptual model of flow regimes from the deep, ductile crust to the surface, and assumes a approximately 10-km-thick transition zone above and below the BDT. Okada et al. (2015) show that, following the M$_{w}$ 9.0 Tohoku earthquake in 2011, earthquake swarms at approximately 4–10 km depth exhibited temporal expansion that can be explained by fluid diffusion (e.g. their fig. 8; note the consistent rates), with inferred k ~ 5 × 10$^{-16}$ m2. The M$_{w}$ 8.0 Wenchuan earthquake in 2008 caused coseismic groundwater-level changes across China. Shi et al. (2015) show that the sign and amplitude of water-level response was essentially random; thus, poroelastic response to coseismic static strain was not responsible for most water-level changes, even in the near field. Rather, hydrogeologic and tectonic settings were the dominant controlling factors, and permeability enhancement was the dominant mechanism.

Effects of fluid injection at the scale of a reservoir or ore-deposit

Hydromechanical simulations of fluid injection into the very shallow crystalline crust by Preisig et al. (2015) show development of connected permeability to be almost exclusively orthogonal to the minimum principle stress, resulting in strongly anisotropic flow regardless of injection design. This is because tensile opening of a hydraulic fracture generates an increase in stress that limits the response of neighboring fractures in both tensile opening and shear. Whereas most papers in this collection deal with an isotropic permeability (implying $k = k_x = k_y = k_z$) or two primary k orientations (e.g. k_x and k_y), the full permeability tensor is relevant to their analysis (e.g. their eq. 6). Miller (2015) simulates the well-known enhanced geothermal experiment in Basel, Switzerland. He assumes a range of existing fault orientations subject to Mohr–Coulomb failure (his fig. 4) and effective-stress-dependent permeability that increases stepwise (×1000) when a failure criterion is satisfied; assumes a pre-existing permeability distribution; solves a nonlinear form of the diffusion equation (his eq. 5) subject to the observed pressure-time history; catalogs an ‘earthquake’ when any gridpoint fails; and successfully simulates the time history of permeability evolution (his figs 5 and 6), hypocenter migration (his fig. 9), and earthquake rates (his fig. 10). Finally, Weis (2015) simulates multiphase H$_2$O–NaCl fluid flow in concert with a dynamic permeability model, isolating (for instance) the influence of NaCl (his figs 7 versus 9) and sub-aerial topography (figs 10 and 11).

A data structure to integrate and extend existing knowledge

We live in an era of exploding information technology. Thus, the final paper in this collection, by Fan et al., outlines a vision for the ‘DigitalCrust’: a community-governed, four-dimensional data system of the Earth’s crustal structure. The DigitalCrust concept posits a particular emphasis on crustal permeability and porosity, which have not been synthesized elsewhere and play an essential role in crustal dynamics.

TOWARD SYSTEMATIC CHARACTERIZATION

The measured permeability of the shallow continental crust is so highly variable that it is often considered to defy systematic characterization. Nevertheless, some order has

© 2014 John Wiley & Sons Ltd, *Geofluids*, 15, 1–10
been revealed in globally compiled data sets, including postulated relations between permeability and depth on a whole-crust scale (i.e. to approximately 30 km depth; e.g. Manning & Ingebritsen 1999; Ingebritsen & Manning 2010) and between permeability and lithology in the uppermost crust (to approximately 100 m depth; Gleeson et al. 2011). The recognized limitations of these empirical relations helped to inspire this collection of papers.

In fact, certain papers in this collection highlight the fallacy of extrapolating crustal-scale k-z relations to the uppermost crust (e.g. Burns et al. 2015; Ranjram et al. 2015). The permeability structure of the shallow (approximately <1 km) crust is highly heterogeneous, and dominant controls on local permeability include the primary lithology, porosity, rheology, geochemistry, and tectonic and time-temperature histories of the rocks. The permeability of clastic sediments in the cool, shallow crust is often well predicted as a function of mechanical compaction and consequent porosity–permeability relations (e.g. Daigle & Screaton, 2015; Luijendijk & Gleeson, 2015). However, this predictability diminishes at depths where diagenetic process become important (e.g. Fig. 2a); in the North Sea basin, for instance, pressure solution begins to affect porosity–permeability relations at approximately 2 km depth (Fig. 2b). Similarly, hydrothermal alteration of volcanic rocks tends to cause significant reduction of permeability at temperatures in excess of approximately 40–50°C (e.g. Burns et al. 2015). Systematic permeability differences among original lithologies persist to contact-metamorphic depths of 3–10 km, but are not evident at regional metamorphic depths of 10–30+ km (Fig. 3) – presumably because, at greater depths, the metamorphic textures are largely independent of the original lithology.

The temporal evolution of permeability can be gradual or abrupt. Streamflow responses to moderate to large earthquakes demonstrate that dynamic stresses can instantaneously change permeability on a regional scale (e.g. Rojstaczer & Wolf 1992); large (1 mm) fractures can be sealed by silica precipitation within 10 years (Lowell et al. 1993); and simulations of calcite dissolution in coastal carbonate aquifers suggest significant changes in porosity and permeability over timescales of 10^4–10^5 years (Sanford & Konikow 1989). At the other end of the spectrum, the reduction of pore volume during sediment burial modifies permeability very slowly. For example, shale permeabilities from the U.S. Gulf Coast vary from about 10^{-18} m2 near the surface to about 10^{-20} m2 at 5 km depth (Neglia 1979), and the natural subsidence rate is 0.1–10 mm year$^{-1}$ (Sharp & Domenico 1976), so we can infer that it takes perhaps 107 years for the permeability of a subsiding package of shale to decrease by a factor of 10. These various observations are consistent with suggestions that crustal-scale permeability is a dynamically self-adjusting property, reflecting a competition between permeability destruction by processes such as compaction and permeability creation by processes such as fluid sourcing (e.g. Connolly & Podladchikov, 2015) and tectonically driven fracturing and faulting.

Nonetheless, given the highly variable rates and scales of permeability creation and decay, considering permeability as static parameter can be a reasonable assumption for a wide range of research problems and applications. For example, for typical low-temperature hydrogeologic investigations with timescales of days to decades, permeability may be considered static in the absence of seismicity. Simi-
larly, if it takes perhaps 10^7 years for the permeability of a subsiding package of shale to decrease by a factor of 10, permeability in sedimentary basins may be considered static for investigations on much shorter timescales. Whether the dynamic variation of permeability is important to include in analyses and quantitative models depends upon its rapidity and magnitude relative to the requirements of the problem at hand.

Recent research on enhanced geothermal reservoirs, ore-forming systems (Fig. 4), and the hydrologic effects of earthquakes yields broadly consistent results regarding permeability enhancement by dynamic stresses. Shear dislocation caused by tectonic forcing or fluid injection can increase near- to intermediate-field permeability by factors of 100 to 1000. Dynamic stresses (shaking) in the intermediate- to far-field corresponding to seismic energy densities $>0.01 \text{ J m}^{-3}$ also increase permeability, albeit often by <10 and at most by a factor of approximately 20 (e.g. Wang & Manga 2010; Manga et al. 2012). These permeability increases are transient, tending to return to preseismic values over timescales on the order of months to decades (e.g. Elkhoury et al. 2006; Kitagawa et al. 2007; Xue et al. 2013). There is reasonable agreement between the magnitude of near- to intermediate-field permeability increases (10^2 to 10^3-fold) directly measured at enhanced geothermal sites (e.g. Evans et al. 2005; Häring et al. 2008), inferred from field evidence (e.g. Howald et al. 2015; Saffer 2015), invoked in simulations of transient hydrothermal circulation (e.g. Weis et al. 2012; Taron et al. 2014; Howald et al. 2015; Weis, 2015), and inferred from seismic and metamorphic data (Ingebritsen & Manning 2010). We note that enhanced geothermal systems, geologic carbon sequestration (Lucier & Zoback 2011), and other geophysical processes may also contribute to dynamic permeability enhancement.
2008), and deep injection of waste fluid (Hsieh & Bred-ehoef 1981; Frohlich et al. 2014) all entail similar stimuli, namely fluid-injection rates on the order of 10 s of kg s\(^{-1}\), as do the simulations of ore-forming systems by Weis et al. (2012; Ellsworth 2013). This ongoing injection experiment, although poorly constrained, represents an opportunity to explore and assess dynamic crustal permeability to depths of perhaps 10 km.

Even the most intensive campaigns to measure permeability in the very shallow crust cannot yield unambiguous determination of the large-scale trends that govern, for instance, transport behavior (e.g. Eggleston & Rojstaczer 1998). Thus it is likely that models of large-scale fluid transport will continue to depend on inferences based on geophysical imaging and on improved understanding of the thermal, mechanical, and geochemical factors that control the overall permeability structure of the crust. Our hope and expectation is that this collection of papers and the associated data will enhance our ability to quantify or predict permeability and its variability with space, direction, and time.

ACKNOWLEDGEMENTS

We thank the USGS Powell Center for hosting two workshops that led to this collection of papers; the USGS Geothermal and Volcano Hazards programs (SEI) and the National Science and Engineering Research Council (TG); and Erick Burns, Paul Hsieh, Christian Huber, Michael Manga, Craig Manning, Mark Person, and Richard Worden for thoughtful comments that helped to improve this introduction. As Guest Editors, we also thank all authors for their persistence and for their substantial contributions to this special issue of Geofluids; the 60 or so referees who helped to evaluate and improve those contributions; and the Editors and staff of Geofluids for their advice and support. Articles co-authored by the Guest Editors were handled with editorial independence.

REFERENCES

Eggleston C, Rojstaczer S (1998) Identification of large-scale earthquake events on a nearly continental scale (e.g. Hitzman et al. 2008), and deep injection of waste fluid (Hsieh & Bred-ehoef 1981; Frohlich et al. 2014) all entail similar stimuli, namely fluid-injection rates on the order of 10 s of kg s\(^{-1}\), as do the simulations of ore-forming systems by Weis et al. (2012; Ellsworth 2013). This ongoing injection experiment, although poorly constrained, represents an opportunity to explore and assess dynamic crustal permeability to depths of perhaps 10 km.

Even the most intensive campaigns to measure permeability in the very shallow crust cannot yield unambiguous determination of the large-scale trends that govern, for instance, transport behavior (e.g. Eggleston & Rojstaczer 1998). Thus it is likely that models of large-scale fluid transport will continue to depend on inferences based on geophysical imaging and on improved understanding of the thermal, mechanical, and geochemical factors that control the overall permeability structure of the crust. Our hope and expectation is that this collection of papers and the associated data will enhance our ability to quantify or predict permeability and its variability with space, direction, and time.

ACKNOWLEDGEMENTS

We thank the USGS Powell Center for hosting two workshops that led to this collection of papers; the USGS Geothermal and Volcano Hazards programs (SEI) and the National Science and Engineering Research Council (TG); and Erick Burns, Paul Hsieh, Christian Huber, Michael Manga, Craig Manning, Mark Person, and Richard Worden for thoughtful comments that helped to improve this introduction. As Guest Editors, we also thank all authors for their persistence and for their substantial contributions to this special issue of Geofluids; the 60 or so referees who helped to evaluate and improve those contributions; and the Editors and staff of Geofluids for their advice and support. Articles co-authored by the Guest Editors were handled with editorial independence.

REFERENCES

Eggleston C, Rojstaczer S (1998) Identification of large-scale earthquake events on a nearly continental scale (e.g. Hitzman et al. 2008), and deep injection of waste fluid (Hsieh & Bred-ehoef 1981; Frohlich et al. 2008) all entail similar stimuli, namely fluid-injection rates on the order of 10 s of kg s\(^{-1}\), as do the simulations of ore-forming systems by Weis et al. (2012; Ellsworth 2013). This ongoing injection experiment, although poorly constrained, represents an opportunity to explore and assess dynamic crustal permeability to depths of perhaps 10 km.

Even the most intensive campaigns to measure permeability in the very shallow crust cannot yield unambiguous determination of the large-scale trends that govern, for instance, transport behavior (e.g. Eggleston & Rojstaczer 1998). Thus it is likely that models of large-scale fluid transport will continue to depend on inferences based on geophysical imaging and on improved understanding of the thermal, mechanical, and geochemical factors that control the overall permeability structure of the crust. Our hope and expectation is that this collection of papers and the associated data will enhance our ability to quantify or predict permeability and its variability with space, direction, and time.

ACKNOWLEDGEMENTS

We thank the USGS Powell Center for hosting two workshops that led to this collection of papers; the USGS Geothermal and Volcano Hazards programs (SEI) and the National Science and Engineering Research Council (TG); and Erick Burns, Paul Hsieh, Christian Huber, Michael Manga, Craig Manning, Mark Person, and Richard Worden for thoughtful comments that helped to improve this introduction. As Guest Editors, we also thank all authors for their persistence and for their substantial contributions to this special issue of Geofluids; the 60 or so referees who helped to evaluate and improve those contributions; and the Editors and staff of Geofluids for their advice and support. Articles co-authored by the Guest Editors were handled with editorial independence.

REFERENCES

permeability over the surface of the Earth. *Geophysical Research Letters*, 38, L02401.

INTRODUCTION TO THE SPECIAL ISSUE ON CRUSTAL PERMEABILITY

1 Crustal permeability: Introduction to the special issue
S.E. Ingebritsen and T. Gleeson

THE PHYSICS OF PERMEABILITY

11 A pore-scale investigation of the dynamic response of saturated porous media to transient stresses
C. Huber and Y. Su

24 Flow of concentrated suspensions through fractures: small variations in solid concentration cause significant in-plane velocity variations

37 Normal stress-induced permeability hysteresis of a fracture in a granite cylinder
A.P.S. Selvadurai

48 Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings
J. Rutqvist

STATIC PERMEABILITY

Sediments and sedimentary rocks

67 How well can we predict permeability in sedimentary basins? Deriving and evaluating porosity–permeability equations for noncemented sand and clay mixtures
E. Luijendijk and T. Gleeson

84 Evolution of sediment permeability during burial and subduction
H. Daigle and E.J. Screaton

Igneous and metamorphic rocks

106 Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting?
M. Ranjram, T. Gleeson and E. Luijendijk

120 Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA
E.R. Burns, C.F. Williams, S.E. Ingebritsen, C.J. Voss, F.A. Spence and J. Dungan

139 Deep fluid circulation within crystalline basement rocks and the role of hydrologic windows in the formation of the Truth or Consequences, New Mexico low-temperature geothermal system
J. Pepin, M. Person, F. Phillips, S. Kelley, S. Timmons, L. Owens, J. Witscher and C. Gable

161 Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks
I. Stober and K. Bucher

DYNAMIC PERMEABILITY

Oceanic crust

179 Rapid generation of reaction permeability in the roots of black smoker systems, Troodos ophiolite, Cyprus
J.R. Cann, A.M. McCaig and B.W.D. Yardley

Fault zones

193 The permeability of active subduction plate boundary faults
D.M. Saffer

216 Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes
S.C. Cox, C.D. Menzies, R. Sutherland, Ph. Dens, C. Chamberlain and D.A.H. Teagle

240 The where and how of faults, fluids and permeability – insights from fault stepovers, scaling properties and gold mineralisation
S. Micklethwaite, A. Ford, W. Witt and H.A. Sheldon

252 Evidence for long timescale (10^3 years) changes in hydrothermal activity induced by seismic events

Crustal-scale behaviour

269 An analytical solution for solitary porosity waves: dynamic permeability and fluidization of nonlinear viscous and viscoplastic rock
J.A.D. Connolly and Y.Y. Podladchikov

293 Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku-Oki earthquake in NE Japan: implications for crustal fluid distribution and crustal permeability

310 Continental-scale water-level response to a large earthquake
Z. Shi, G. Wang, M. Manga and C.-Y. Wang

Effects of fluid injection at the scale of a reservoir or ore deposit
G. Preisig, E. Eberhardt, V. Ginsburg, V. Roche, M. Van Der Baan, B. Valley, P.K. Kaiser, D. Duff and R. Lowthor

Modeling enhanced geothermal systems and the essential nature of large-scale changes in permeability at the onset of slip
S.A. Miller

350 The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems
P. Weis

A DATA STRUCTURE TO INTEGRATE AND EXTEND EXISTING KNOWLEDGE

372 DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow